001022110 001__ 1022110
001022110 005__ 20240226075427.0
001022110 037__ $$aFZJ-2024-01231
001022110 041__ $$aEnglish
001022110 1001_ $$0P:(DE-Juel1)190591$$aBasaric, Farah$$b0
001022110 1112_ $$aBound States$$cBudapest$$d2023-06-12 - 2023-06-15$$wHungary
001022110 245__ $$aAharonov-Bohm-type oscillations in phase-pure core/shell GaAs/InAsnanowires
001022110 260__ $$c2023
001022110 3367_ $$033$$2EndNote$$aConference Paper
001022110 3367_ $$2BibTeX$$aINPROCEEDINGS
001022110 3367_ $$2DRIVER$$aconferenceObject
001022110 3367_ $$2ORCID$$aCONFERENCE_POSTER
001022110 3367_ $$2DataCite$$aOutput Types/Conference Poster
001022110 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706700978_5588$$xAfter Call
001022110 500__ $$aDFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
001022110 520__ $$aEpitaxially grown core-shell GaAs/InAs nanowires provide heterostructure with transport properties governed by the angular momentum states in the InAs shell formed around highresistance GaAs core . In contrast to polymorphic GaAs/InAs nanowires, phasepure core/shell nanowires, comprising only of wurtzite crystal structure along the nanowire axis, offer uniformity in their electrical, mechanical and optical properties due to the absenceof a crystallographic disorder. Magnetotransport measurements were carried out at variable temperatures and for different gate voltages, under an axially applied magnetic field. Pronounced Aharonov-Bohm-type oscillations in the conductance could be observed for such phase-pure nanowire type. In measurements at different gate voltages, significantly higher oscillation amplitudes are observed in comparison to the corresponding measurements on polymorphic core/shell nanowires. Measurements at different temperatures show robustness of these oscillations against high temperatures as a result of reduced disorder, where finally, strong indications of a quasi-ballistic transport regime could be recognized. Combining phase–pure core/shell GaAs/InAs nanowires with an in-situ depositedsuperconducting layer, a gate-controlled Josephson junction could be fabricated. In such system, coupling between Andreev bound states with orbital angular momentumstates under an axially applied magnetic field results in orbital Josephson interference. So far, obtained measurement results on GaAs/InAs nanowires indicate a strong effect of disorderreduction in a case of phase-pure nanowire type, manifested in their superior transport properties (as compared to the polymorphic type), thus presenting a promising platform forfuture investigation of orbital Josephson interference.
001022110 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001022110 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001022110 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001022110 7001_ $$0P:(DE-HGF)0$$aFaustmann, Anton$$b1
001022110 7001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b2
001022110 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b3
001022110 7001_ $$0P:(DE-Juel1)128600$$aKrause, Christoph$$b4
001022110 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b5
001022110 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
001022110 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
001022110 909CO $$ooai:juser.fz-juelich.de:1022110$$pVDB
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190591$$aForschungszentrum Jülich$$b0$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b2$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b3$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128600$$aForschungszentrum Jülich$$b4$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b5$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
001022110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b7$$kFZJ
001022110 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001022110 9141_ $$y2023
001022110 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001022110 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001022110 980__ $$aposter
001022110 980__ $$aVDB
001022110 980__ $$aI:(DE-Juel1)PGI-9-20110106
001022110 980__ $$aI:(DE-Juel1)PGI-10-20170113
001022110 980__ $$aUNRESTRICTED