001022111 001__ 1022111
001022111 005__ 20240226075427.0
001022111 037__ $$aFZJ-2024-01232
001022111 041__ $$aEnglish
001022111 1001_ $$0P:(DE-Juel1)190591$$aBasaric, Farah$$b0$$eCorresponding author
001022111 1112_ $$aDPG Frühjahrstagung$$cDresden$$d2023-03-27 - 2023-03-31$$wGermany
001022111 245__ $$aAharonov–Bohm–type oscillations in phase–pure core/shell GaAs/InAs nanowires
001022111 260__ $$c2023
001022111 3367_ $$033$$2EndNote$$aConference Paper
001022111 3367_ $$2DataCite$$aOther
001022111 3367_ $$2BibTeX$$aINPROCEEDINGS
001022111 3367_ $$2DRIVER$$aconferenceObject
001022111 3367_ $$2ORCID$$aLECTURE_SPEECH
001022111 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1706789857_2171$$xAfter Call
001022111 500__ $$aDFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
001022111 520__ $$aEpitaxially grown phase-pure GaAs/InAs core/shell nanowires offer uniformity in their electrical, mechanical and optical properties. Magnetotransport measurements were carried out at variable temperature regime and varying gate potential, under applied in-plane magnetic field. Pronounced Aharonov–Bohm–type oscillations in the conductance are observed for this nanowire type, featuring large oscillation amplitude for measurements under varying gate potential. Furthermore, measurements at varying temperature show robustness of these oscillations against high temperatures as a result of reduced disorder in the system. Finally, strong indications of quasi–ballistic transport regime could be recognised for this nanowire type.
001022111 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001022111 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001022111 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001022111 7001_ $$0P:(DE-HGF)0$$aFaustmann, Anton$$b1
001022111 7001_ $$0P:(DE-HGF)0$$aZimmermann, Erik$$b2
001022111 7001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b3
001022111 7001_ $$0P:(DE-Juel1)166158$$aPawlis, Alexander$$b4
001022111 7001_ $$0P:(DE-Juel1)128600$$aKrause, Christoph$$b5
001022111 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b6
001022111 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
001022111 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8
001022111 909CO $$ooai:juser.fz-juelich.de:1022111$$pVDB
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190591$$aForschungszentrum Jülich$$b0$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b3$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166158$$aForschungszentrum Jülich$$b4$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128600$$aForschungszentrum Jülich$$b5$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b6$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001022111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
001022111 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001022111 9141_ $$y2023
001022111 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001022111 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
001022111 980__ $$aconf
001022111 980__ $$aVDB
001022111 980__ $$aI:(DE-Juel1)PGI-9-20110106
001022111 980__ $$aI:(DE-Juel1)PGI-10-20170113
001022111 980__ $$aUNRESTRICTED