001     1022111
005     20240226075427.0
037 _ _ |a FZJ-2024-01232
041 _ _ |a English
100 1 _ |a Basaric, Farah
|0 P:(DE-Juel1)190591
|b 0
|e Corresponding author
111 2 _ |a DPG Frühjahrstagung
|c Dresden
|d 2023-03-27 - 2023-03-31
|w Germany
245 _ _ |a Aharonov–Bohm–type oscillations in phase–pure core/shell GaAs/InAs nanowires
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1706789857_2171
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a DFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
520 _ _ |a Epitaxially grown phase-pure GaAs/InAs core/shell nanowires offer uniformity in their electrical, mechanical and optical properties. Magnetotransport measurements were carried out at variable temperature regime and varying gate potential, under applied in-plane magnetic field. Pronounced Aharonov–Bohm–type oscillations in the conductance are observed for this nanowire type, featuring large oscillation amplitude for measurements under varying gate potential. Furthermore, measurements at varying temperature show robustness of these oscillations against high temperatures as a result of reduced disorder in the system. Finally, strong indications of quasi–ballistic transport regime could be recognised for this nanowire type.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Faustmann, Anton
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zimmermann, Erik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Behner, Gerrit
|0 P:(DE-Juel1)180161
|b 3
700 1 _ |a Pawlis, Alexander
|0 P:(DE-Juel1)166158
|b 4
700 1 _ |a Krause, Christoph
|0 P:(DE-Juel1)128600
|b 5
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 8
909 C O |o oai:juser.fz-juelich.de:1022111
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128600
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21