001022127 001__ 1022127
001022127 005__ 20240226075429.0
001022127 037__ $$aFZJ-2024-01248
001022127 041__ $$aEnglish
001022127 1001_ $$0P:(DE-Juel1)190635$$aTeller, Justus$$b0$$eCorresponding author
001022127 1112_ $$aDPG Frühjahrstagung$$cDresden$$d2023-03-27 - 2023-03-31$$wGermany
001022127 245__ $$aTowards the Quantum-Anomalous-Hall-Effect in MagneticTopological Insulator Structures
001022127 260__ $$c2023
001022127 3367_ $$033$$2EndNote$$aConference Paper
001022127 3367_ $$2BibTeX$$aINPROCEEDINGS
001022127 3367_ $$2DRIVER$$aconferenceObject
001022127 3367_ $$2ORCID$$aCONFERENCE_POSTER
001022127 3367_ $$2DataCite$$aOutput Types/Conference Poster
001022127 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1706702138_28888$$xAfter Call
001022127 500__ $$aDFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
001022127 520__ $$aThree-dimensional topological insulators (TIs) are a material class which may enable robust topological quantum computing by using so-called Majorana zero modes. Published theoretical work predicts the Majorana state to exist in magnetic topological insulators which exhibit the quantum anomalous Hall effect (QAHE). We present magnetotransport measurements of Cr-doped magnetic (Bi0.27Sb0.73)2Te3 which partially show the QAHE. At 1.2 K, the uniformly Cr-doped samples show a magnetic signature whose behaviour is probed under gate influence. Based on these measurements, an existing QAHE is ruled out. The results are compared to a magnetic TI-heterostructure which shows the QAHE. The temperature dependence of the effect is measured. In addition, the magnetic energy gap is probed by a gate dependent measurement. The QAHE is improved by current adjustment.
001022127 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001022127 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001022127 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
001022127 7001_ $$0P:(DE-HGF)0$$aZimmermann, Erik$$b1
001022127 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b2
001022127 7001_ $$0P:(DE-Juel1)180161$$aBehner, Gerrit$$b3
001022127 7001_ $$0P:(DE-HGF)0$$aMoors, Marco$$b4
001022127 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b5
001022127 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b6
001022127 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
001022127 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8
001022127 909CO $$ooai:juser.fz-juelich.de:1022127$$pVDB
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190635$$aForschungszentrum Jülich$$b0$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b2$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180161$$aForschungszentrum Jülich$$b3$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b5$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b6$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
001022127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b8$$kFZJ
001022127 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001022127 9141_ $$y2023
001022127 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001022127 980__ $$aposter
001022127 980__ $$aVDB
001022127 980__ $$aI:(DE-Juel1)PGI-9-20110106
001022127 980__ $$aUNRESTRICTED