001     1022127
005     20240226075429.0
037 _ _ |a FZJ-2024-01248
041 _ _ |a English
100 1 _ |a Teller, Justus
|0 P:(DE-Juel1)190635
|b 0
|e Corresponding author
111 2 _ |a DPG Frühjahrstagung
|c Dresden
|d 2023-03-27 - 2023-03-31
|w Germany
245 _ _ |a Towards the Quantum-Anomalous-Hall-Effect in MagneticTopological Insulator Structures
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1706702138_28888
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a DFG Germany’s Excellence Strategy—Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1—390534769
520 _ _ |a Three-dimensional topological insulators (TIs) are a material class which may enable robust topological quantum computing by using so-called Majorana zero modes. Published theoretical work predicts the Majorana state to exist in magnetic topological insulators which exhibit the quantum anomalous Hall effect (QAHE). We present magnetotransport measurements of Cr-doped magnetic (Bi0.27Sb0.73)2Te3 which partially show the QAHE. At 1.2 K, the uniformly Cr-doped samples show a magnetic signature whose behaviour is probed under gate influence. Based on these measurements, an existing QAHE is ruled out. The results are compared to a magnetic TI-heterostructure which shows the QAHE. The temperature dependence of the effect is measured. In addition, the magnetic energy gap is probed by a gate dependent measurement. The QAHE is improved by current adjustment.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Zimmermann, Erik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schleenvoigt, Michael
|0 P:(DE-Juel1)171405
|b 2
700 1 _ |a Behner, Gerrit
|0 P:(DE-Juel1)180161
|b 3
700 1 _ |a Moors, Marco
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 5
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 8
909 C O |o oai:juser.fz-juelich.de:1022127
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21