001     1022141
005     20240226075430.0
024 7 _ |a 10.5194/egusphere-egu23-13465
|2 doi
037 _ _ |a FZJ-2024-01262
100 1 _ |a Poppe Terán, Christian
|0 P:(DE-Juel1)180763
|b 0
|e Corresponding author
111 2 _ |a EGU General Assembly 2023
|c Vienna
|d 2023-04-24 - 2023-04-28
|w Austria
245 _ _ |a Uncertainty in representation of ecosystem processes in Europe by the Community Land Model v5
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1706774791_9640
|2 PUB:(DE-HGF)
|x Plenary/Keynote
520 _ _ |a Understanding hydrological and biogeochemical ecosystem process variability in response to a changing climate is important to improve land surface models and assess current and future states of ecosystem functioning. However, the representation of spatial heterogeneity of ecosystem processes in state-of-the-art land-surface models has not been evaluated thoroughly until today. Here we compare gross primary production (GPP) and evapotranspiration (ET) simulated by the Community Land Model version 5 (CLM5) for the period 1995-2018 over the Euro-CORDEX domain with in-situ data from eddy-covariance sites as well as remote sensing and reanalysis data. Additionally, we conducted a parameter sensitivity analysis to identify the impact of uncertainty coming from ecosystem parameters (in particular default parameters for given plant functional types) for selected sites in Europe. Our results show that GPP and ET variation across hydroclimates show in general a good agreement between CLM5 and remote sensing and reanalysis products. However, both GPP and ET simulated by CLM5 show large differences with measured in-situ data, depending on the ecosystem type. Further, we identify sensitive parameters that will be adjusted to improve ecosystem representation in CLM5 in a future study. This work is important to improve land surface models and parameterization of plant functional types to understand and improve predictions of ecosystem functioning.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a eLTER PLUS - European long-term ecosystem, critical zone and socio-ecological systems research infrastructure PLUS (871128)
|0 G:(EU-Grant)871128
|c 871128
|f H2020-INFRAIA-2019-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a S. Naz, Bibi
|0 P:(DE-Juel1)169794
|b 1
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 2
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
773 _ _ |a 10.5194/egusphere-egu23-13465
856 4 _ |u https://meetingorganizer.copernicus.org/EGU23/EGU23-13465.html
909 C O |o oai:juser.fz-juelich.de:1022141
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21