001022151 001__ 1022151
001022151 005__ 20250204113759.0
001022151 0247_ $$2doi$$a10.1186/s13244-023-01572-w
001022151 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01272
001022151 0247_ $$2pmid$$a38228979
001022151 0247_ $$2WOS$$aWOS:001143356000001
001022151 037__ $$aFZJ-2024-01272
001022151 082__ $$a610
001022151 1001_ $$00000-0002-7307-396X$$aKocak, Burak$$b0
001022151 245__ $$aMEThodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII
001022151 260__ $$aHeidelberg$$bSpringer$$c2024
001022151 3367_ $$2DRIVER$$aarticle
001022151 3367_ $$2DataCite$$aOutput Types/Journal article
001022151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706708771_29256
001022151 3367_ $$2BibTeX$$aARTICLE
001022151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001022151 3367_ $$00$$2EndNote$$aJournal Article
001022151 520__ $$aPurpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies.Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated.Result: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community.Conclusion: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers.Critical relevance statement: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning.Key points:• A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol.• The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time.• METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines.• A web application has been developed to help with the calculation of the METRICS score (https://metricsscore.github.io/metrics/METRICS.html) and a repository created to collect feedback from the radiomics community (https://github.com/metricsscore/metrics).
001022151 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001022151 536__ $$0G:(DE-HGF)POF4-510$$a510 - Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action (POF4-500)$$cPOF4-500$$fPOF IV$$x1
001022151 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001022151 7001_ $$00000-0002-7237-711X$$aAkinci D’Antonoli, Tugba$$b1$$eCorresponding author
001022151 7001_ $$00000-0003-1658-6598$$aMercaldo, Nathaniel$$b2
001022151 7001_ $$00000-0002-5932-2392$$aAlberich-Bayarri, Angel$$b3
001022151 7001_ $$00000-0002-3244-3864$$aBaessler, Bettina$$b4
001022151 7001_ $$00000-0002-0026-9101$$aAmbrosini, Ilaria$$b5
001022151 7001_ $$00000-0001-6359-0763$$aAndreychenko, Anna E.$$b6
001022151 7001_ $$00000-0001-8734-6482$$aBakas, Spyridon$$b7
001022151 7001_ $$00000-0002-8533-5090$$aBeets-Tan, Regina G. H.$$b8
001022151 7001_ $$00000-0001-9249-8624$$aBressem, Keno$$b9
001022151 7001_ $$00000-0002-7053-6471$$aBuvat, Irene$$b10
001022151 7001_ $$00000-0002-3808-0785$$aCannella, Roberto$$b11
001022151 7001_ $$00000-0001-7604-5625$$aCappellini, Luca Alessandro$$b12
001022151 7001_ $$00000-0001-8390-7721$$aCavallo, Armando Ugo$$b13
001022151 7001_ $$00000-0001-7010-3812$$aChepelev, Leonid L.$$b14
001022151 7001_ $$00000-0001-9729-2756$$aChu, Linda Chi Hang$$b15
001022151 7001_ $$00000-0003-0349-5590$$aDemircioglu, Aydin$$b16
001022151 7001_ $$00000-0003-4232-476X$$adeSouza, Nandita M.$$b17
001022151 7001_ $$00000-0001-9248-1398$$aDietzel, Matthias$$b18
001022151 7001_ $$00000-0002-4003-3320$$aFanni, Salvatore Claudio$$b19
001022151 7001_ $$00000-0003-4806-9413$$aFedorov, Andrey$$b20
001022151 7001_ $$00000-0002-1878-0290$$aFournier, Laure S.$$b21
001022151 7001_ $$00000-0001-5052-8231$$aGiannini, Valentina$$b22
001022151 7001_ $$00000-0002-0904-5147$$aGirometti, Rossano$$b23
001022151 7001_ $$00000-0003-3651-2529$$aGroot Lipman, Kevin B. W.$$b24
001022151 7001_ $$00000-0002-5333-5993$$aKalarakis, Georgios$$b25
001022151 7001_ $$00000-0002-3449-8017$$aKelly, Brendan S.$$b26
001022151 7001_ $$00000-0003-2731-933X$$aKlontzas, Michail E.$$b27
001022151 7001_ $$00000-0001-7654-8011$$aKoh, Dow-Mu$$b28
001022151 7001_ $$00000-0001-9022-6000$$aKotter, Elmar$$b29
001022151 7001_ $$aLee, Ho Yun$$b30
001022151 7001_ $$00000-0001-6785-5167$$aMaas, Mario$$b31
001022151 7001_ $$00000-0002-8234-010X$$aMarti-Bonmati, Luis$$b32
001022151 7001_ $$00000-0001-6800-9878$$aMüller, Henning$$b33
001022151 7001_ $$00000-0003-1891-7477$$aObuchowski, Nancy$$b34
001022151 7001_ $$00000-0002-5588-1867$$aOrlhac, Fanny$$b35
001022151 7001_ $$00000-0003-3298-2072$$aPapanikolaou, Nikolaos$$b36
001022151 7001_ $$00000-0001-6572-5369$$aPetrash, Ekaterina$$b37
001022151 7001_ $$0P:(DE-Juel1)191494$$aPfaehler, Elisabeth$$b38
001022151 7001_ $$00000-0003-4785-6394$$aPinto dos Santos, Daniel$$b39
001022151 7001_ $$00000-0002-0105-935X$$aPonsiglione, Andrea$$b40
001022151 7001_ $$00000-0003-0111-9540$$aSabater, Sebastià$$b41
001022151 7001_ $$00000-0001-6545-9427$$aSardanelli, Francesco$$b42
001022151 7001_ $$00000-0001-5512-5810$$aSeeböck, Philipp$$b43
001022151 7001_ $$00000-0001-6644-274X$$aSijtsema, Nanna M.$$b44
001022151 7001_ $$00000-0002-7905-5789$$aStanzione, Arnaldo$$b45
001022151 7001_ $$00000-0001-6183-4429$$aTraverso, Alberto$$b46
001022151 7001_ $$00000-0001-7811-4612$$aUgga, Lorenzo$$b47
001022151 7001_ $$00000-0001-7639-8172$$aVallières, Martin$$b48
001022151 7001_ $$00000-0002-9515-5616$$avan Dijk, Lisanne V.$$b49
001022151 7001_ $$00000-0003-0447-0918$$avan Griethuysen, Joost J. M.$$b50
001022151 7001_ $$00000-0002-6084-0656$$avan Hamersvelt, Robbert W.$$b51
001022151 7001_ $$00000-0002-8995-1210$$avan Ooijen, Peter$$b52
001022151 7001_ $$00000-0003-0350-1794$$aVernuccio, Federica$$b53
001022151 7001_ $$00000-0003-1610-2397$$aWang, Alan$$b54
001022151 7001_ $$00000-0002-6507-0531$$aWilliams, Stuart$$b55
001022151 7001_ $$00000-0001-9284-4830$$aWitowski, Jan$$b56
001022151 7001_ $$00000-0002-0851-9953$$aZhang, Zhongyi$$b57
001022151 7001_ $$00000-0002-0342-9545$$aZwanenburg, Alex$$b58
001022151 7001_ $$00000-0002-1452-1574$$aCuocolo, Renato$$b59
001022151 773__ $$0PERI:(DE-600)2543323-4$$a10.1186/s13244-023-01572-w$$gVol. 15, no. 1, p. 8$$n1$$p8$$tInsights into imaging$$v15$$x1869-4101$$y2024
001022151 8564_ $$uhttps://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.pdf$$yOpenAccess
001022151 8564_ $$uhttps://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.gif?subformat=icon$$xicon$$yOpenAccess
001022151 8564_ $$uhttps://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022151 8564_ $$uhttps://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022151 8564_ $$uhttps://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022151 909CO $$ooai:juser.fz-juelich.de:1022151$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001022151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191494$$aForschungszentrum Jülich$$b38$$kFZJ
001022151 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001022151 9131_ $$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$x1
001022151 9141_ $$y2024
001022151 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022151 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001022151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINSIGHTS IMAGING : 2022$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:40:08Z
001022151 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:40:08Z
001022151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2024-04-10T15:40:08Z
001022151 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001022151 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
001022151 920__ $$lyes
001022151 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001022151 980__ $$ajournal
001022151 980__ $$aVDB
001022151 980__ $$aUNRESTRICTED
001022151 980__ $$aI:(DE-Juel1)IAS-8-20210421
001022151 9801_ $$aFullTexts