001     1022151
005     20250204113759.0
024 7 _ |a 10.1186/s13244-023-01572-w
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01272
|2 datacite_doi
024 7 _ |a 38228979
|2 pmid
024 7 _ |a WOS:001143356000001
|2 WOS
037 _ _ |a FZJ-2024-01272
082 _ _ |a 610
100 1 _ |a Kocak, Burak
|0 0000-0002-7307-396X
|b 0
245 _ _ |a METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706708771_29256
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies.Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated.Result: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community.Conclusion: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers.Critical relevance statement: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning.Key points:• A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol.• The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time.• METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines.• A web application has been developed to help with the calculation of the METRICS score (https://metricsscore.github.io/metrics/METRICS.html) and a repository created to collect feedback from the radiomics community (https://github.com/metricsscore/metrics).
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 510 - Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action (POF4-500)
|0 G:(DE-HGF)POF4-510
|c POF4-500
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Akinci D’Antonoli, Tugba
|0 0000-0002-7237-711X
|b 1
|e Corresponding author
700 1 _ |a Mercaldo, Nathaniel
|0 0000-0003-1658-6598
|b 2
700 1 _ |a Alberich-Bayarri, Angel
|0 0000-0002-5932-2392
|b 3
700 1 _ |a Baessler, Bettina
|0 0000-0002-3244-3864
|b 4
700 1 _ |a Ambrosini, Ilaria
|0 0000-0002-0026-9101
|b 5
700 1 _ |a Andreychenko, Anna E.
|0 0000-0001-6359-0763
|b 6
700 1 _ |a Bakas, Spyridon
|0 0000-0001-8734-6482
|b 7
700 1 _ |a Beets-Tan, Regina G. H.
|0 0000-0002-8533-5090
|b 8
700 1 _ |a Bressem, Keno
|0 0000-0001-9249-8624
|b 9
700 1 _ |a Buvat, Irene
|0 0000-0002-7053-6471
|b 10
700 1 _ |a Cannella, Roberto
|0 0000-0002-3808-0785
|b 11
700 1 _ |a Cappellini, Luca Alessandro
|0 0000-0001-7604-5625
|b 12
700 1 _ |a Cavallo, Armando Ugo
|0 0000-0001-8390-7721
|b 13
700 1 _ |a Chepelev, Leonid L.
|0 0000-0001-7010-3812
|b 14
700 1 _ |a Chu, Linda Chi Hang
|0 0000-0001-9729-2756
|b 15
700 1 _ |a Demircioglu, Aydin
|0 0000-0003-0349-5590
|b 16
700 1 _ |a deSouza, Nandita M.
|0 0000-0003-4232-476X
|b 17
700 1 _ |a Dietzel, Matthias
|0 0000-0001-9248-1398
|b 18
700 1 _ |a Fanni, Salvatore Claudio
|0 0000-0002-4003-3320
|b 19
700 1 _ |a Fedorov, Andrey
|0 0000-0003-4806-9413
|b 20
700 1 _ |a Fournier, Laure S.
|0 0000-0002-1878-0290
|b 21
700 1 _ |a Giannini, Valentina
|0 0000-0001-5052-8231
|b 22
700 1 _ |a Girometti, Rossano
|0 0000-0002-0904-5147
|b 23
700 1 _ |a Groot Lipman, Kevin B. W.
|0 0000-0003-3651-2529
|b 24
700 1 _ |a Kalarakis, Georgios
|0 0000-0002-5333-5993
|b 25
700 1 _ |a Kelly, Brendan S.
|0 0000-0002-3449-8017
|b 26
700 1 _ |a Klontzas, Michail E.
|0 0000-0003-2731-933X
|b 27
700 1 _ |a Koh, Dow-Mu
|0 0000-0001-7654-8011
|b 28
700 1 _ |a Kotter, Elmar
|0 0000-0001-9022-6000
|b 29
700 1 _ |a Lee, Ho Yun
|b 30
700 1 _ |a Maas, Mario
|0 0000-0001-6785-5167
|b 31
700 1 _ |a Marti-Bonmati, Luis
|0 0000-0002-8234-010X
|b 32
700 1 _ |a Müller, Henning
|0 0000-0001-6800-9878
|b 33
700 1 _ |a Obuchowski, Nancy
|0 0000-0003-1891-7477
|b 34
700 1 _ |a Orlhac, Fanny
|0 0000-0002-5588-1867
|b 35
700 1 _ |a Papanikolaou, Nikolaos
|0 0000-0003-3298-2072
|b 36
700 1 _ |a Petrash, Ekaterina
|0 0000-0001-6572-5369
|b 37
700 1 _ |a Pfaehler, Elisabeth
|0 P:(DE-Juel1)191494
|b 38
700 1 _ |a Pinto dos Santos, Daniel
|0 0000-0003-4785-6394
|b 39
700 1 _ |a Ponsiglione, Andrea
|0 0000-0002-0105-935X
|b 40
700 1 _ |a Sabater, Sebastià
|0 0000-0003-0111-9540
|b 41
700 1 _ |a Sardanelli, Francesco
|0 0000-0001-6545-9427
|b 42
700 1 _ |a Seeböck, Philipp
|0 0000-0001-5512-5810
|b 43
700 1 _ |a Sijtsema, Nanna M.
|0 0000-0001-6644-274X
|b 44
700 1 _ |a Stanzione, Arnaldo
|0 0000-0002-7905-5789
|b 45
700 1 _ |a Traverso, Alberto
|0 0000-0001-6183-4429
|b 46
700 1 _ |a Ugga, Lorenzo
|0 0000-0001-7811-4612
|b 47
700 1 _ |a Vallières, Martin
|0 0000-0001-7639-8172
|b 48
700 1 _ |a van Dijk, Lisanne V.
|0 0000-0002-9515-5616
|b 49
700 1 _ |a van Griethuysen, Joost J. M.
|0 0000-0003-0447-0918
|b 50
700 1 _ |a van Hamersvelt, Robbert W.
|0 0000-0002-6084-0656
|b 51
700 1 _ |a van Ooijen, Peter
|0 0000-0002-8995-1210
|b 52
700 1 _ |a Vernuccio, Federica
|0 0000-0003-0350-1794
|b 53
700 1 _ |a Wang, Alan
|0 0000-0003-1610-2397
|b 54
700 1 _ |a Williams, Stuart
|0 0000-0002-6507-0531
|b 55
700 1 _ |a Witowski, Jan
|0 0000-0001-9284-4830
|b 56
700 1 _ |a Zhang, Zhongyi
|0 0000-0002-0851-9953
|b 57
700 1 _ |a Zwanenburg, Alex
|0 0000-0002-0342-9545
|b 58
700 1 _ |a Cuocolo, Renato
|0 0000-0002-1452-1574
|b 59
773 _ _ |a 10.1186/s13244-023-01572-w
|g Vol. 15, no. 1, p. 8
|0 PERI:(DE-600)2543323-4
|n 1
|p 8
|t Insights into imaging
|v 15
|y 2024
|x 1869-4101
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1022151/files/METhodological%20RadiomICs%20Score%20%28METRICS%29%20a%20quality%20scoring%20tool%20for%20radiomics%20research%20endorsed%20by%20EuSoMII%20-%20s13244-023-01572-w.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1022151
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 38
|6 P:(DE-Juel1)191494
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INSIGHTS IMAGING : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:40:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:40:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2024-04-10T15:40:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21