001022197 001__ 1022197
001022197 005__ 20240226075433.0
001022197 0247_ $$2doi$$a10.1007/s00723-023-01568-1
001022197 0247_ $$2WOS$$aWOS:001035534900001
001022197 037__ $$aFZJ-2024-01318
001022197 082__ $$a620
001022197 1001_ $$0P:(DE-HGF)0$$aWieboldt, R.$$b0
001022197 245__ $$aEffects of Salt Precipitation in the Topmost Soil LayerInvestigated by NMR
001022197 260__ $$aWien [u.a.]$$bSpringer$$c2023
001022197 3367_ $$2DRIVER$$aarticle
001022197 3367_ $$2DataCite$$aOutput Types/Journal article
001022197 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706787256_8938
001022197 3367_ $$2BibTeX$$aARTICLE
001022197 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001022197 3367_ $$00$$2EndNote$$aJournal Article
001022197 520__ $$aThe drying of highly concentrated aqueous salt solutions in sand and soil has beeninvestigated by one-dimensional spatially resolved low-field relaxation measurementsof 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei ofwater and sodium ions. Water evaporates until the solutions in the solid matrix reachsaturation conditions, when salt begins to crystallize. Depending on salt type andconditions, such as actual soil water content and air humidity, this crystallizationcan occur above (efflorescent) or below (subflorescent) the soil surface. Both effectsoccur in nature and affect the evaporation behavior of water. The formation of saltprecipitate domains is demonstrated by MRI, where the precipitate domains remainpenetrable to water. Complete drying is achieved in the top 2 mm of soil with theexception of strongly hygroscopic perchlorates which maintain a constant amountof liquid water under ambient laboratory conditions and dry air. This situation isconsidered similar to the co-existence of perchlorates and water in strongly eutecticmixtures on Mars.
001022197 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001022197 536__ $$0G:(GEPRIS)393212668$$aSFB 1313 C05 - Nicht-invasive Bildgebung von Experimenten auf der REV-Skala zum Verständnis des Einflusses von Fluid-Feststoff-Reaktionen auf Strömung und Transport in porösen Medien (C05) (393212668)$$c393212668$$x1
001022197 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
001022197 7001_ $$0P:(DE-HGF)0$$aLindt, K.$$b1
001022197 7001_ $$0P:(DE-Juel1)129521$$aPohlmeier, Andreas$$b2$$ufzj
001022197 7001_ $$0P:(DE-HGF)0$$aMattea, C.$$b3
001022197 7001_ $$0P:(DE-HGF)0$$aStapf, S.$$b4$$eCorresponding author
001022197 7001_ $$0P:(DE-Juel1)129464$$aHaber-Pohlmeier, Sabine$$b5$$ufzj
001022197 773__ $$0PERI:(DE-600)1480644-7$$a10.1007/s00723-023-01568-1$$p 1607–1631$$tApplied magnetic resonance$$v54$$x0937-9347$$y2023
001022197 8564_ $$uhttps://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.pdf$$yRestricted
001022197 8564_ $$uhttps://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.gif?subformat=icon$$xicon$$yRestricted
001022197 8564_ $$uhttps://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001022197 8564_ $$uhttps://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
001022197 8564_ $$uhttps://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
001022197 909CO $$ooai:juser.fz-juelich.de:1022197$$pVDB
001022197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129521$$aForschungszentrum Jülich$$b2$$kFZJ
001022197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129464$$aForschungszentrum Jülich$$b5$$kFZJ
001022197 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001022197 9141_ $$y2023
001022197 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
001022197 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
001022197 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MAGN RESON : 2022$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001022197 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001022197 920__ $$lyes
001022197 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001022197 980__ $$ajournal
001022197 980__ $$aVDB
001022197 980__ $$aI:(DE-Juel1)IBG-3-20101118
001022197 980__ $$aUNRESTRICTED