Home > Publications database > Effects of Salt Precipitation in the Topmost Soil LayerInvestigated by NMR > print |
001 | 1022197 | ||
005 | 20240226075433.0 | ||
024 | 7 | _ | |a 10.1007/s00723-023-01568-1 |2 doi |
024 | 7 | _ | |a WOS:001035534900001 |2 WOS |
037 | _ | _ | |a FZJ-2024-01318 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Wieboldt, R. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Effects of Salt Precipitation in the Topmost Soil LayerInvestigated by NMR |
260 | _ | _ | |a Wien [u.a.] |c 2023 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706787256_8938 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The drying of highly concentrated aqueous salt solutions in sand and soil has beeninvestigated by one-dimensional spatially resolved low-field relaxation measurementsof 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei ofwater and sodium ions. Water evaporates until the solutions in the solid matrix reachsaturation conditions, when salt begins to crystallize. Depending on salt type andconditions, such as actual soil water content and air humidity, this crystallizationcan occur above (efflorescent) or below (subflorescent) the soil surface. Both effectsoccur in nature and affect the evaporation behavior of water. The formation of saltprecipitate domains is demonstrated by MRI, where the precipitate domains remainpenetrable to water. Complete drying is achieved in the top 2 mm of soil with theexception of strongly hygroscopic perchlorates which maintain a constant amountof liquid water under ambient laboratory conditions and dry air. This situation isconsidered similar to the co-existence of perchlorates and water in strongly eutecticmixtures on Mars. |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 0 |
536 | _ | _ | |a SFB 1313 C05 - Nicht-invasive Bildgebung von Experimenten auf der REV-Skala zum Verständnis des Einflusses von Fluid-Feststoff-Reaktionen auf Strömung und Transport in porösen Medien (C05) (393212668) |0 G:(GEPRIS)393212668 |c 393212668 |x 1 |
650 | 2 | 7 | |a Geosciences |0 V:(DE-MLZ)SciArea-140 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Lindt, K. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Pohlmeier, Andreas |0 P:(DE-Juel1)129521 |b 2 |u fzj |
700 | 1 | _ | |a Mattea, C. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Stapf, S. |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
700 | 1 | _ | |a Haber-Pohlmeier, Sabine |0 P:(DE-Juel1)129464 |b 5 |u fzj |
773 | _ | _ | |a 10.1007/s00723-023-01568-1 |0 PERI:(DE-600)1480644-7 |p 1607–1631 |t Applied magnetic resonance |v 54 |y 2023 |x 0937-9347 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1022197 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129521 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129464 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL MAGN RESON : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|