001     1022197
005     20240226075433.0
024 7 _ |a 10.1007/s00723-023-01568-1
|2 doi
024 7 _ |a WOS:001035534900001
|2 WOS
037 _ _ |a FZJ-2024-01318
082 _ _ |a 620
100 1 _ |a Wieboldt, R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of Salt Precipitation in the Topmost Soil LayerInvestigated by NMR
260 _ _ |a Wien [u.a.]
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706787256_8938
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The drying of highly concentrated aqueous salt solutions in sand and soil has beeninvestigated by one-dimensional spatially resolved low-field relaxation measurementsof 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei ofwater and sodium ions. Water evaporates until the solutions in the solid matrix reachsaturation conditions, when salt begins to crystallize. Depending on salt type andconditions, such as actual soil water content and air humidity, this crystallizationcan occur above (efflorescent) or below (subflorescent) the soil surface. Both effectsoccur in nature and affect the evaporation behavior of water. The formation of saltprecipitate domains is demonstrated by MRI, where the precipitate domains remainpenetrable to water. Complete drying is achieved in the top 2 mm of soil with theexception of strongly hygroscopic perchlorates which maintain a constant amountof liquid water under ambient laboratory conditions and dry air. This situation isconsidered similar to the co-existence of perchlorates and water in strongly eutecticmixtures on Mars.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a SFB 1313 C05 - Nicht-invasive Bildgebung von Experimenten auf der REV-Skala zum Verständnis des Einflusses von Fluid-Feststoff-Reaktionen auf Strömung und Transport in porösen Medien (C05) (393212668)
|0 G:(GEPRIS)393212668
|c 393212668
|x 1
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
700 1 _ |a Lindt, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pohlmeier, Andreas
|0 P:(DE-Juel1)129521
|b 2
|u fzj
700 1 _ |a Mattea, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stapf, S.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Haber-Pohlmeier, Sabine
|0 P:(DE-Juel1)129464
|b 5
|u fzj
773 _ _ |a 10.1007/s00723-023-01568-1
|0 PERI:(DE-600)1480644-7
|p 1607–1631
|t Applied magnetic resonance
|v 54
|y 2023
|x 0937-9347
856 4 _ |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1022197/files/Wieboldt_et_al_AMR_2023-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1022197
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129521
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129464
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL MAGN RESON : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21