001     1022198
005     20250129221932.0
024 7 _ |a 10.1109/IEEECONF56349.2022.10052010
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01319
|2 datacite_doi
024 7 _ |a WOS:000976687600210
|2 WOS
037 _ _ |a FZJ-2024-01319
041 _ _ |a English
100 1 _ |a Yu, Zhenming
|0 P:(DE-Juel1)190500
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2022 56th Asilomar Conference on Signals, Systems, and Computers
|c Pacific Grove
|d 2022-10-31 - 2022-11-02
|w CA
245 _ _ |a Integration of Physics-Derived Memristor Models with Machine Learning Frameworks
260 _ _ |c 2022
|b IEEE
295 1 0 |a 2022 56th Asilomar Conference on Signals, Systems, and Computers : [Proceedings] - IEEE, 2022. - ISBN 978-1-6654-5906-8 - doi:10.1109/IEEECONF56349.2022.10052010
300 _ _ |a 1142-1146
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1738136748_6366
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Simulation frameworks such MemTorch, DNN+NeuroSim, and aihwkit are commonly used to facilitate the end-to-end co-design of memristive machine learning (ML) accelerators. These simulators can take device nonidealities into account and are integrated with modern ML frameworks. However, memristors in these simulators are modeled with either lookup tables or simple analytic models with basic nonlinearities. These simple models are unable to capture certain performance-critical aspects of device nonidealities. For example, they ignore the physical cause of switching, which induces errors in switching timings and thus incorrect estimations of conductance states. This work aims at bringing physical dynamics into consideration to model nonidealities while being compatible with GPU accelerators. We focus on Valence Change Memory (VCM) cells, where the switching nonlinearity and SET/RESET asymmetry relate tightly with the thermal resistance, ion mobility, Schottky barrier height, parasitic resistance, and other effects. The resulting dynamics require solving an ODE that captures changes in oxygen vacancies. We modified a physics-derived SPICE-level VCM model, integrated it with the aihwkit simulator and tested the performance with the MNIST dataset. Results show that noise that disrupts the SET/RESET matching affects network performance the most. This work serves as a tool for evaluating how physical dynamics in memristive devices affect neural network accuracy and can be used to guide the development of future integrated devices.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ES1133K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)
|0 G:(BMBF)16ES1133K
|c 16ES1133K
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 1
|u fzj
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 2
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/IEEECONF56349.2022.10052010
856 4 _ |u https://juser.fz-juelich.de/record/1022198/files/2403.06746.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022198/files/2403.06746.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022198/files/2403.06746.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022198/files/2403.06746.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022198/files/2403.06746.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1022198
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190500
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188273
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21