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Abstract—Simulation frameworks such MemTorch [1] [2],
DNN+NeuroSim [3] [4], and aihwkit [5] are commonly used to fa-
cilitate the end-to-end co-design of memristive machine learning
(ML) accelerators. These simulators can take device nonidealities
into account and are integrated with modern ML frameworks.
However, memristors in these simulators are modeled with either
lookup tables or simple analytic models with basic nonlinearities.
These simple models are unable to capture certain performance-
critical aspects of device nonidealities. For example, they ignore
the physical cause of switching, which induces errors in switching
timings and thus incorrect estimations of conductance states.
This work aims at bringing physical dynamics into considera-
tion to model nonidealities while being compatible with GPU
accelerators. We focus on Valence Change Memory (VCM) cells,
where the switching nonlinearity and SET/RESET asymmetry
relate tightly with the thermal resistance, ion mobility, Schottky
barrier height, parasitic resistance, and other effects [6]. The
resulting dynamics require solving an ODE that captures changes
in oxygen vacancies. We modified a physics-derived SPICE-
level VCM model [7] [8], integrated it with the aihwkit [5]
simulator and tested the performance with the MNIST dataset.
Results show that noise that disrupts the SET/RESET matching
affects network performance the most. This work serves as a
tool for evaluating how physical dynamics in memristive devices
affect neural network accuracy and can be used to guide the
development of future integrated devices.

I. INTRODUCTION

Because of their compact size, non-volatility, and low
latency, memristive devices show great potential in ML and
neuromorphic engineering. Digital, analog, and stochastic in-
memory computing schemes have been developed that uti-
lize the advantages of memristors [9]. However, memris-
tors are subject to nonidealities like switching nonlinearity,
SET/RESET asymmetry, device-to-device, and cycle-to-cycle
variations. Naive training algorithms that don’t take these into
account suffer from performance loss. [10] To assist in co-
designing memristive ML accelerators, simulation frameworks
have been developed [11] with various memristor models.

Memristor models can be generally sorted into two cate-
gories: behavioral models and physics-derived models. With
behavioral models, memristors are treated as black boxes.
Experimental observations are fitted with simple equations,
and the models are validated and improved in this process. In
contrast, physics-derived models formulate physical equations
stemming from an analysis of physical phenomena. The de-
rived equations are often simplified and optimized to get the
final solution. While physics-derived models that can accu-

rately produce voltage-dependent behaviors have been adopted
in circuit design and validations [12] [13], only behavioral
models were used in ML simulators like MemTorch [1] [2],
DNN+NeuroSim [3] [4], and aihwkit [5].

Behavioral models can produce faithful results at a rather
low compute cost, but they are not able to capture some
aspects of device physics, which limits the application of ML
simulators. For example, they do not model voltage-dependent
switching behaviors, so the effect of different SET and RESET
voltages cannot be investigated and optimized. They do not
model noise based on variations of device parameters, so the
simulation results cannot be used to guild material scientists
for optimizing memristive devices. To improve on this situa-
tion, we integrated a physics-derived memristor model in an
open-source ML simulator aihwkit [5] and investigated the
effect of device nonidealities. With this approach, we provide
a easy access to the voltage configurations as well as physic
driven noises, and make it easy to investigate their impact on
the network.

II. DEVICE MODELING

A. JART VCM Model

We choose an accurate physics driven model, the Jülich
Aachen Resistive Switching Tools (JART) VCM model [6]
as our starting point. The model includes device-to-device
and cycle-to-cycle noise, and has also been validated with
experimental results in [7]. In the JART model, the filament
region of VCM devices are abstracted as a stack of different
materials, and the layers of the stack as then modeled as circuit
elements in series. As shown in Fig. 1, the model equivalent
circuit consists 4 different parts: Rs, Rp, Rd and DSch.
Rs represents the series resistance, which consists of a fixed

resistance of the titanium oxide layer RTiOx
and a current-

dependent line resistance Rl. The detailed expression is shown
as:

Rs = RTiOx
+Rl = RTiOx

+R0

(
1 + αlR0IM

2Rth,l

)
(1)

where R0 is the line resistance under zero current, αl is the
temperature coefficient of the lines, IM is the current through
the memristor and Rth,l is the thermal resistance of the lines.

The HfO2 layer is divided into two regions, a plug region
with fixed oxygen vacancy concentration Np, and a disc region
where the oxygen vacancy concentration Nd can change.
The conductive plug region serves as a reservoir of oxygen
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Fig. 1. Equivalent circuit diagram for the JART memristor model. Details of
this device can be found in [14]

vacancies, which can then flow into or out of the disc region
under the applied voltages, and change the conductance. The
resistances of these layers are expressed as:

Rp/d = lp/d
(
ZVO

eANp/dµn

)
(2)

where lp/d is the length of the regions, ZVO
e = 2e is the

charge of a oxygen vacancy, A = πrd
2 is the cross section

area of the filament area and µn is the electron mobility.
Finally, DSch represents the Schottky barrier formed be-

tween the disc region and the bottom electrode. The current-
voltage relation of the resulting Schottky diode is shown as:

IM =



−
√
πW00e

(
ϕBn

cosh2
(

W00
kBT

) − VSch

)
· exp

(
−eϕBn

W0

)
·
(
exp

(−eVSch

ϵ′

)
− 1

)
·AA∗ · T

kB
if VM < 0

AA∗T 2 exp
(

−eϕBn

kBT

)
exp

(
eVSch

kBT − 1
)

if VM > 0

(3)
where kB is the Boltzman’s constant, A∗ is the Richardson’s
constant. The local temperature T is given by:

T =

{
IM (Vd + Vp + VSch)Rth,SET + T0 if VM < 0

IM (Vd + Vp + VSch)Rth,RESET + T0 if VM > 0
(4)

where T0 is the ambient temperature, Rth,SET and
Rth,RESET are the thermal resistances of the hafnium oxide
layer, and W00 and W0 are expressed as:

W00 =
eh

4π

√
ZVO

Nd

m∗ϵ
, W0 =

W00

tanh
(

W00

kBT

) (5)

and ϵ′ as:
ϵ′ =

W00

W00

kBT − tanh
(

W00

kBT

) (6)

where h is the Planck’s constant, m∗ is the electron effective
mass and ϵ is the static oxide permittivity. The Schottky barrier
height ϕBn is given by:

ϕBn = ϕBn0 −
4
√

ZVO
Nd

(
ϕBn0 − ϕn − VSch

e

)
8π2ϵ3ϕB

(7)

where ϕBn0 is the nominal Schottky barrier height, ϕn is the
energy level difference between the Fermi level and the con-
duction band edge and ϵϕB

is the hafnium oxide permittivity
related to energy barrier lowering.

B. Simplified Model

The JART model described in Sec. II-A is accurate but
expensive to compute. The current IM described in Eq. 3 is
only related to the voltage drop across the Schottky diode
VSch. However, other parts of the device are modeled as
resistors, where the voltage drop can only be calculated with
the current IM . Together with other effects, Eq. 1-7 form a
complex set of nonlinear equations that can only be solved
iteratively, which is very hard to parallelize. To solve this
issue, we simplified the current calculation with a model [8]
that is mathematically fitted to the JART model. The simplified
model provides an estimation of IM with the oxygen vacancy
concentration in the disc region Nd and the applied voltage
across the memristor VM . If VM < 0:

IM = −a− b

(1 + cd)
f

where a =
a1 + a0

1 + e−
VM+a2

a3

− a0

b = b1
(
1− e−VM

)
− b0VM , c =

c2e
−VM

c3 + c1VM − c0
Nd · 10−26

d = d2e
−VM

d3 + d1VM − d0 , f = f0 +
f1 − f0

1 +
(

−VM

f2

)f3

(8)

where ax, bx, cx, dx and fx are fitting coefficients. If VM > 0:

IM = −
g0

(
e−g1VM − 1

)(
1 + (h0 + h1VM + h2e−h3VM )

(
Nd

Nd,min

)−j0
) 1

k0

(9)
where gx, hx, jx and kx are fitting coefficients.

Using this simplified model, we can directly calculate IM ,
and assign the voltage drop across the resistance layers with
Eq. 1-2. The VSch can then be calculated as:

VSch = VM − Vs − Vp − Vd (10)

The updates can then be calculated with these voltages.

C. Conductance Update

The conductance update is calculated with the original JART
model [6] [7]. The conductance change is caused by changing
oxygen vacancy concentration in the disc region Nd, which is
described by an ordinary differential equation:

dNd

dt
= − Iion

ZVO
eAld

(11)



where the ionic current Iion is given by:

Iion = ZVO
eAcVO

αν0Flimit (Nd)

·
(
exp

(
−
∆WAf

kBT

)
− exp

(
−∆WAr

kBT

))
(12)

α is the ion hopping distance, ν0 is the attempt frequency and
cVO

is the average vacancy concentration:

cVO
=

Np +Nd

2
(13)

Function Flimit (Nd) scales the update, and limits Nd within
the specified range between Nd,max and Nd,min:

Flimit (Nd) =

1−
(

Nd

Nd,max

)10

if VM < 0

1−
(

Nd,min

Nd

)10

if VM > 0
. (14)

And the energy barriers for ion hopping are described as:

∆WAf/r
= ∆WA

(√
1− γ2 ∓ γ

π

2
+ γ arcsin (γ)

)
(15)

γ =
eZVO

αEion

∆WAπ
(16)

Eion =

{
Vd/ld if VM < 0

(Vp + Vd + VSch) /lc if VM > 0
(17)

where ∆WA is the activation energy, ld is the thickness of the
disc region and lc is the thickness of the hafnium oxide layer.

Fig. 2. Simulation results of the memristor model in Python. (a): Changing
pulse length with fixed pulse amplitude. (b): Changing pulse amplitude with
fixed pulse length for the SET direction(i.e. VM < 0). (c): Changing pulse
amplitude with fixed pulse length for the RESET direction(i.e. VM > 0). (d):
Hand-tuned SET and RESET matching.

With this physics-derived model, we can freely adjust the
pulse length and the pulse amplitude to get various switching
behaviour in both directions. As shown in Fig. 2(a-c), higher
pulse amplitudes and longer pulse length can make the device

switch faster, but the intermediate states becomes less accessi-
ble. Lower pulse amplitudes can give us better accessibility to
the intermediate states, but at the cost of switching delays.
We matched the SET and RESET curves by hand tuning
the voltages, and the results shown in Fig. 2(d) are almost
identical.

To ease the use of the device in a on-chip learning scenario
where the weights are first trained for task A and later adjusted
for task B, we need to control the conductance range. If the
conductance range is not controlled, a device might be pushed
too far off towards the extreme. In this situation, it which will
be hard to move back into the fast-switching region, with the
low voltages that grant us access to the intermediate states.
This could be implemented by control circuits that checks the
device conductance, and skip some of the applied pulses that
further push deice conductance beyond the specified range.

D. Noise Implementation

To account for stochasticity, we implement variations se-
lectively on parameters that are physically noisy. However, as
described in Sec. II-B, in the simplified model, physical values
are hidden behind the fitting parameters ax-kx in Eq. 8-9. So
we only induced noise with conductance update described in
Sec II-C. In the original JART model [7], noise are introduced
in the oxygen vacancy boundaries: Nd,max, Nd,min and the
filament geometry parameters: rd, ld. Because we introduced
peripheral circuits that control the conductance ranges, we also
added device-to-device noise on the conductance boundaries
set by the control circuits: Gmax, Gmin.

In [7], device-to-device noise are introduced upon initializa-
tion, by drawing from a Gaussian distribution with variance
scaled by the mean:

Xd2d ∼ N (Xmean, Xmean · σ) (18)

and cycle-to-cycle noise is implemented as a random walk
starting from the device-to-device initialization values, i.e.
X0 = Xd2d. For Nd,max and Nd,min, cycle-to-cycle noise
were directly inserted:

Xt+1 = Xt +Ω ·Xt · σ, Ω ∼ U (−1, 1) (19)

and for the filament geometry parameters rd, ld, the cycle-to-
cycle noise is scaled by the update magnitude. This produces
more noise when a larger update is applied, and less noise
otherwise. However, with our ML use case, most weight up-
dates occur in the first few epochs. As learning progresses, the
updates become small and the cycle-to-cycle noise becomes
negligible. So we added another additive cycle-to-cycle noise
to the JART implementation:

Xt+1 =


Xt ·

(
1 + Ω1σadd +Ω2σmult

(
Nd−Nd,old

Nd,max−Nd,old

))
if VM < 0

Xt ·
(
1 + Ω1σadd +Ω2σmult

(
Nd,old−Nd

Nd,old−Nd,min

))
if VM > 0

Ω1, Ω2 ∼ U (−1, 1) .
(20)



This additive noise accounts for the diffusion in the filament
area, which happens with or without external stimulation.

Optional boundaries can be specified to truncate the device-
to-device noise to reasonable ranges or to limit the cycle-to-
cycle random walk process during training.

III. RESULTS

We integrated the model described in Sec. II with the
IBM aihwkit simulator [5] and tested the results on MNIST
dataset [15]1. The model is integrated into a 3-layer fully
connected network with sigmoid activation between the layers.
We trained the network with stochastic gradient descent and a
scheduler that decreases the learning rate by 50% for every 10
epochs. This is necessary because our device model has a very
sharp transition in the middle of the conductance range (Fig.2).
If a constant learning rate is used, the network parameters
oscillate towards the end of the training, which damages the
performance.

As shown in Fig. 3(a), with the same network architec-
ture, learning rate, and scheduler configuration, floating point
weights achieved an accuracy of 95%. Our device model
achieved an accuracy of 93.8% without any noise being
applied, and with noise fitted experimentally in [7], we can
get a performance of 88.3%.

From equations 11-17, we can derive that noise on different
parameters have different effects. Noise on Nd,max, Nd,min,
and ld only affect the update magnitude, they don’t change the
sign of the update, so in the end they only affect the learning
rate. Noise on rd however, can affect the matching between
the increment and decrement update steps. This is mainly due
to the asymmetric change in Eion and T with variable rd. As
shown in Eq. 17, with SET pulses, Eion is related with rd:

Eion =
Vd

ld
=

IM ·Rd

ld

=
IM · ld (ZVO

eANdµn)

ld
= IMZVO

eNdµnπr
2
d.

(21)

However, with RESET pulses, Eion is only related to noise-
free parameters:

Eion =
Vp + Vd + VSch

lc
=

VM − Vs

lc

=
VM − IM ·

(
RTiOx

+R0

(
1 + αlR0IM

2Rth,l

))
lc

.

(22)

Noise in rd also affects the local temperature T through
thermal resistances, and Eq. 4 becomes:

T =

IM (VM − Vs)Rth,SET · r2d
r2d,Noisy

+ T0 if VM < 0

IM (VM − Vs)Rth,RESET · r2d
r2d,Noisy

+ T0 if VM > 0
.

(23)

1The code for the modified aihwkit simulator with JART model integration
and the test scripts used for this work are publicly available on GitHub at
https://github.com/ZhenmingYu/aihwkit.

(c)

(b)

(f)(e)

(g) (h)

(d)

(a)

Fig. 3. MNIST simulation results of accuracy (a) and loss (b) for simulations
with realistic mixed noise, without any noise, and with floating point weights.
Accuracy of device-to-device noise at the same scale (c) and based on realistic
estimation (d). Accuracy of cycle-to-cycle noise on Nd,max, Nd,min (e) and
on ld. Accuracy (f) and loss (g) for cycle-to-cycle noise on rd.

where Rth,SET and Rth,RESET are different values. As a
result, the local temperature will scale differently during SET
and RESET for the same rd,Noisy , and will then affect the
switching behaviour in different ways.

The effect of different noise can also be seen in the results.
Fig. 3(c) and (d) show the accuracy of the network with device-
to-device noise. When the device-to-device noise are scaled to
the same extent of 30%, noise on most parameters don’t affect
the performance as much, and the network achieved accuracy
close to the noise-free baseline. With device-to-device noise on
rd however, the network performance decreases significantly
to about 89.2%. Using rd noise based on a realistic estimation,
where rd is allowed a smaller spread, the performance is
slightly increased to about 90.7%. Similar results can be seen
with cycle-to-cycle noise. As shown in Fig. 3(e) and (f), noise
on Nd,max, Nd,min and ld don’t affect performance much.

https://github.com/ZhenmingYu/aihwkit


The results are quite different for the cycle-to-cycle noise on
rd: The network is crippled with a large 30% noise directly
applied in the random walk. The loss will not go down during
training (Fig. 3(h)), and an accuracy of only 13.7% is achieved
(Fig. 3(g)). However, with a small 1% noise directly applied, it
becomes easier for the network to get out of local minima, and
an accuracy beyond the baseline is achieved. Multiplicative
noise scaled by the update have very little impact on the
network performance, as they become negligible after a few
training epochs.

Because we used the simplified fit model (Sec. II-B) for
current calculation, the voltage estimation across different
layers will not change with noise on the disc region length
ld. As a result, noise on ld appear to have little impact on
the network performance in our tests. However, in reality, ld
should also be able to affect the network by changing the
voltage drop across different layers, as shown in Eq. 1-3.
Nonetheless, we are still able to conclude that the matching
between increment and decrement update steps is the most
important property for training neural networks on memristors.
This finding is also in line with previous publication [10] [16].

IV. CONCLUSION

We built a memristive machine learning simulator with
physics-derived model and investigated the effect of noise
from various sources based on it. This simulator unlocks
many possibilities for the community. It opens up access to
the pulse configurations, which enables us to explore better
ways to match the performance-critical SET and RESET
behaviours. It also exposes nonidealities rooted in different
physical sources, which grants the ML community chances to
develop new algorithms that target these nonidealities directly.
On the other hand, it also gives material scientists a tool to
evaluate the effect of different noise sources, which can guild
them in developing novel device structures that alleviates noise
on performance-critical parameters. With the random walk
based cycle-to-cycle noise implementation, we can also disable
the boundaries and train the model on different tasks. The
parameters would then stray away from their original values,
causing the device behavior to change after the training. This
allow us to study the effect of device aging, and try to prevent
performance loss while operating the devices.
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