001     1022226
005     20250203103345.0
024 7 _ |a 10.34734/FZJ-2024-01347
|2 datacite_doi
037 _ _ |a FZJ-2024-01347
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 0
|e Corresponding author
111 2 _ |a Neuromorphic, Natural and Physical Computing
|g NNPC
|c Hannover
|d 2023-10-25 - 2023-10-27
|w Germany
245 _ _ |a Bio-inspired sequence learning mechanisms and their implementation in a memristive neuromorphic hardware
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1710403695_31139
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a We present a sequence learning model that explains how biological networks learn to predict upcoming elements, signal non-anticipated events, and recall sequences in response to a cue signal. The model accounts for anatomical and electrophysiological properties of cortical neuronal circuits and learns complex sequences in an unsupervised manner using known biological plasticity and homeostatic control mechanisms. We further investigate the feasibility of implementing the sequence learning model on dedicated hardware mimicking brain properties, specifically focusing on memristive crossbar arrays. Finally, we apply the model to sequence classification and anomaly detection in streams of real-world data, and discuss the role of dendritic branches for the sequence learning capacity.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 2
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 4
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 5
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 6
700 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 1
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 2
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 3
|u fzj
700 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 4
|u fzj
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 6
773 _ _ |0 PERI:(DE-600)2193340-6
|x 1553-734X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1022226/files/NNPC.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1022226/files/NNPC.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1022226/files/NNPC.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1022226/files/NNPC.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1022226/files/NNPC.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1022226
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145211
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 2
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS COMPUT BIOL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-01-04T15:22:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-01-04T15:22:00Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2023-01-04T15:22:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 4
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 5
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21