001     1022230
005     20240226075438.0
024 7 _ |a 10.5194/ems2022-638
|2 doi
037 _ _ |a FZJ-2024-01351
100 1 _ |a Zhang, Lijie
|0 P:(DE-Juel1)185909
|b 0
|u fzj
111 2 _ |a EMS Annual Meeting 2022
|c Bonn
|d 2022-09-05 - 2022-09-09
|w Germany
245 _ _ |a Large Eddy Simulation of Surface Heterogeneity Induced Secondary Circulation with Background Winds
260 _ _ |c 2022
300 _ _ |a 1
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1706773526_9136
|2 PUB:(DE-HGF)
520 _ _ |a Land surface heterogeneity affects the surface heat flux distribution and induces secondary circulations at a certain scale. Background wind may significantly influence the effect of surface heterogeneity on secondary circulation. In this study, we investigate how background wind affects the evolution of the atmospheric boundary layer, focusing on the influence of the formation of secondary circulation. We used a coupled ICON-LES (Icosahedral Nonhydrostatic Large Eddy Simulation mode) with a land surface model (TERRA-ML) to simulate the development of the atmospheric boundary layer over a river corridor mimicked by continuously distributed soil moisture under different background wind conditions. The atmospheric domain size is 4.8 km x 4.8 km x 4.2 km in X, Y, and Z directions with a horizontal and vertical spatial grid spacing of 50 m using double-periodic boundary conditions. All simulations have the same initial well-mixed atmospheric conditions and constant incoming radiation of 700 Wm-2 with varying background winds with different wind speeds (0 to 16 ms-1) and directions (cross-valley, parallel-valley, or mixed).The atmospheric states are decomposed into three parts: ensemble-averaged, mesoscale, and turbulence. We show that wind speed and surface heterogeneity jointly affect the surface energy distribution, independent of the wind direction. The secondary circulation structure persists under the parallel-valley wind regardless of wind speed but is destroyed when the cross-valley wind is stronger than the mesoscale horizontal wind speed. The maximum mesoscale vertical wind variance reflects the secondary circulation strength. We show that the secondary circulation strength positively correlates with the Bowen ratio and stability parameter (-Zi/L) under cross-valley wind and mixed conditions.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a EXC 2070:  PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)
|0 G:(BMBF)390732324
|c 390732324
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Poll, Stefan
|0 P:(DE-Juel1)165588
|b 1
|u fzj
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 2
|u fzj
773 _ _ |a 10.5194/ems2022-638
856 4 _ |u https://meetingorganizer.copernicus.org/EMS2022/EMS2022-638.html
909 C O |o oai:juser.fz-juelich.de:1022230
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185909
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21