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Abstract 

Modeling and optimization of fed-batch reactors with several multi-step reaction 

pathways is challenging due to the nonlinear dynamic system behavior and large number 

of kinetic parameters. We showcase the model-based optimization of an industrial (20 

m³) fed-batch reactor by using our open-source dynamic optimization software DyOS. 

First, we build a detailed mechanistic model of the fed-batch reactor. Second, we conduct 

parameter estimation of the mechanistic model with 25 states and 44 fitting parameters 

using historic time-series industrial production data. Third, we perform dynamic multi-

stage optimization and identify optimal feeding profiles for the operation, targeting 

improvements in economic profit over the established experience-based production 

routine. We demonstrate substantial economic improvement: The optimized production 

recipe can save up to 10% of raw material at the same yield of main product. Our findings 

underline the strong capabilities of model-based process optimization and its application 

to industrial challenges in process design and operation.  

 

Keywords: Dynamic process optimization, Fed-batch reactor, Industrial application, 

Reaction optimization. 

1. Introduction 

The determination of feeding strategies is of paramount importance in the design and 

control of fed-batch reactors. Finding optimal feeding strategies is typically based on the 

dynamic optimization of a reactor model. However, modeling reaction processes with 

several multi-step reaction pathways can be challenging due to nonlinear system behavior 

that needs to be expressed by many equations and parameters, and a lack of mechanistic 

knowledge about the considered reaction, e.g., reaction kinetics and corresponding 

parameters. When experimental data of the reactor is available, kinetic parameters can be 

estimated using dynamic optimization. Subsequently, dynamic optimization can be 

employed for determining optimal feeding profiles with respect to a defined objective, 

e.g., reaction yield, product quality, and economic targets. Dynamic optimization of fed-

batch reactors has been performed successfully for several applications including the 

production of (bio-)polymers (Zavala et al, 2005; Lopez et al., 2010, Jung et al. 2015), 

yeast (Hjersted & Henson, 2006) and drugs (Banga et al., 2005). We have also recently 
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optimized fed-batch reactors for microgel (Jung et al., 2019) and polymer (Faust et al. 

2021) production. To this end, we have employed our dynamic optimization software 

DyOS (Caspari et al., 2019), which is an open-source framework for the optimization of 

large-scale differential algebraic equation (DAE) systems. 

Herein, we use DyOS for the optimization of feeding strategies for a fed-batch reactor of 

industrial scale. Specifically, we conduct three steps with the overall goal to identify 

optimal feeding strategies: (i) mechanistic modeling of the fed-batch reactor with the 

reaction kinetics, (ii) estimation of kinetic reaction and heat transfer parameters, and (iii) 

dynamic multi-stage optimization of raw material feeding profiles. In the first step, we 

develop together with the plant operators a mechanistic reactor model in the Modelica 

modeling language (Modelica, 2022). The parameter estimation in the second step 

includes the collection of historic industrial production data of the currently established 

experienced-based feeding profiles that we then use to fit model parameters with DyOS. 

In the third step, we start from the established feeding profiles and apply DyOS to identify 

economically optimized feeding strategies. Our in-silico results suggest that the 

optimized feeding strategies can lead to substantial economic improvements and savings 

in raw materials. 

Due to confidentiality reasons, we cannot provide detailed insights on the model, the 

corresponding data, and the literature sources we used to collect information about the 

considered reaction process. We thus focus on the methodological approach of using 

dynamic optimization for fitting model parameters and optimizing feeding profiles. In the 

following, we schematically describe the considered fed-batch reactor, explain the three 

steps (i – iii) in detail, and present the modeling and optimization results. 

2. Fed-Batch Reactor Model Development 

We consider an industrial stirred-tank fed-batch reactor producing one main product in a 

multi-step reaction. The reactor has a volume of 20 m³. A schematic illustration of the 

reactor is shown in Figure 1. The inputs to the reactor are composed of four raw materials 

(RM1, RM2, RM3, RM4), water (H2O), and a 

catalyst (CAT). All input components are fed in liquid 

form, either in pure species or in aqueous solutions. 

RM2, H2O, and CAT are filled into the reactor before 

the reactions start. When RM1 and RM3 are 

introduced to the reactor, several multi-step reactions 

involving multiple intermediate products (IPs) are 

initiated. RM1 and RM3 are dynamically fed during 

the reaction process and can be used to influence the 

reaction rates. The production goal is the main 

product (MP). Additionally, several undesired 

byproducts (BPs) occur in the reaction competing 

with the MP production. The reactor temperature 

during operation is controlled with cooling water 

(CW) that flows through the cooling jacket of the 

reactor and enters with ambient temperature. To stop 

the reaction process an inhibitor (RM4) is fed to the 

reactor. After feeding RM4, the species 

concentrations remain approximately constant and the 

reactor can be drained. 

 

Figure 1. Schematic illustration 

of fed-batch reactor with input, 

output, and cooling water flows. 
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2.1. Mechanistic Modeling 

We develop a dynamic model of the reactor and reaction system. The model includes 25 

differential equations with 44 fitting parameters corresponding to the mass balance with 

the reaction kinetics and to the energy balance. The reaction kinetics involve 21 reactions 

for which reaction constants are calculated using the Arrhenius equation, i.e., two 

parameters in the form of the pre-exponential factor and the activation energy. Note that 

3 side reactions have the same rate constant such that the reaction kinetics effectively 

have 38 fitting parameters in total. The energy balance accounts for the enthalpy of 

reactions, enthalpy flows, and cooling heat transfer rate affecting the temperature of the 

reaction mixture. Five reaction enthalpy parameters need to be estimated as several side 

reactions are modeled by the same enthalpy parameter. For the cooling, the heat transfer 

coefficient represents another fitting parameter, whereas we calculate the heat exchange 

surface and the cooling-water hold up based on the reactor geometry. For all other model 

parameters, e.g., as part of density and heat capacity correlations, we use standard values 

from the literature. In addition, we neglect other energy flows, e.g., heat loss over the 

reactor surface. Next to the differential equations, several algebraic equations, e.g., for 

pH, density, heat capacity, and yield calculation, are part of the model.  

For modeling the dynamic input streams, we discretize the feed flows of RM1, RM3, 

RM4, and CW in one-minute intervals. Since RM2, H2O, and CAT are loaded to the 

reactor without any main reactions occurring, we use the respective total amount loaded 

to the reactor as initial values. 

2.2. Implementation 

We implement the reactor model in the modeling language Modelica (Modelica, 2022). 

Further, we apply our dynamic optimization framework DyOS (Caspari et al., 2019) with 

integrator NIXE (Hannemann et al., 2010) and NLP solver SNOPT (Gill et al., 2005). We 

use the Python interface of DyOS to implement and run the case study in Python. We use 

a Microsoft Windows Server with an Intel(R) Xeon(R) E5-2630 v2 processor running at 

2.6 GHz and 128 GB RAM; simulating the model with given parameters took ca. 2 sec. 

3. Parameter estimation 

The model constitutes overall 44 fitting parameters that we initialize by data obtained 

from laboratory experiments and literature. However, as the simulation results when 

using these parametric values did not match the measured temperature profiles and final 

concentrations available from historical reactor data, we performed parameter estimation. 

To this end, we measured concentrations of some main components and the reactor 

temperature profile for one fed-batch run. In Figure 2, the feeding strategy for this run for 

(a) RM1, RM3, RM4, and (b) CW is illustrated. Subsequently, we used this experimental 

data for fitting the parameters of the model.  

  
Figure 2. Feeding profiles of one fed-batch run for (a) RM1, RM3, RM4 and (b) CW. 

In the parameter estimation process, we utilized DyOS to fit the 44 model parameters 

with the objective to minimize the mean squared error (MSE) of the model deviation to 

the measured time-series of the concentration profiles and the reactor temperature profile. 
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We solve the optimization problem using direct single shooting with optimality and 

feasibility tolerances of 10-3. We apply absolute and relative integrator tolerances of 10-4.  

Figure 3 shows the simulation results with the initial and fitted parameters in comparison 

to the experimental data for the temperature profile and the concentration profiles of the 

MP and RM2. In contrast to the initial model, the results from the fitted model match the 

temperature profile with slight deviations. The fitted model also predicts the 

concentration measurements of MP and RM2 with high accuracy. We stress that due to 

the large model size and large number of parameters, we did not perform a parameter 

identifiability study. Other parameter values might also yield a good fit but were not 

explored since we find a sufficient match of the experimental data using the fitted model. 

 
Figure 3. Comparison of the experimental results from batch run used for fitting with the 

simulation results obtained with the initial and the fitted model: Temperature (left) and 

concentrations for RM2 (middle) and MP (right). 

For validation of the fitted model parameters, we conducted another experimental run of 

the industrial reactor at similar conditions. Figure 4 illustrates the temperature profiles 

and concentration measurements against the simulation results of the fitted model. We 

observe that the model matches the profiles closely. Some deviations regarding the MP 

concentration are, however, noticeable. 

   
Figure 4. Comparison of the experimental results from validation batch run with the 

simulation results obtained with the fitted model: Temperature (left) and concentrations 

for RM2 (middle) and MP (right). 

We also tested the model for other batch runs for which historical data on the temperature 

profile and the end concentrations but not all initial conditions, e.g., temperatures and 

impurities of raw material feed flows, was available. Here, we also observe a generally 

good match of the fitted model results and the experimental data, but also find some 

deviations, especially in the concentrations of some byproducts. We attribute the 

deviations to uncertainty factors in the initial conditions including BP impurities in the 

feed flows, limitations of the mechanistic model in capturing all characteristics of the 

multi-step reaction, and presumably slight overfitting of the parameters.  In comparison 

to the initial model, the parameter fitting improves the prediction accuracy. 

Overall, we conclude that the fitted model correctly captures the trends of temperature 

profiles and concentration measurements. In the next step, we will thus use the model 

with the fitted parameters for optimization of the feed profiles.  
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4. Dynamic optimization of the reactor feeding profiles  

In the optimization of the feeding profiles, we aim at identifying changes in the currently 

established feeding strategy to produce the same amount of MP while using fewer raw 

materials per batch. As a starting point for the optimization, we herein consider the 

feeding profiles from the fed-batch run for which we collected concentration 

measurements and fitted the model parameters. The objective of the optimization is to 

decrease the total costs of RM1 and RM3 fed to the reactor, which we formulate as 

min
 �̇�𝑖 (𝑡)

    𝑚𝑅𝑀1 ∙ 𝑐𝑅𝑀1 + 𝑚𝑅𝑀3 ∙ 𝑐𝑅𝑀3 

  𝑠. 𝑡.     𝑚𝑀𝑃,𝑐𝑢𝑟(𝑡𝑒𝑛𝑑)  ≤ 𝑚𝑀𝑃(𝑡𝑒𝑛𝑑), 

              𝑇𝑅,𝑚𝑖𝑛  ≤  𝑇𝑅  ≤ 𝑇𝑅,𝑚𝑎𝑥 , 

              𝑉𝐿,𝑚𝑖𝑛  ≤  𝑉𝐿  ≤ 𝑉𝐿,𝑚𝑎𝑥 ,                                                                                       (1) 

              0 ≤  �̇�𝑖(𝑡)  ≤ �̇�𝑖,𝑚𝑎𝑥 , 

              𝑐𝐵𝑃,𝑗  ≤ 𝑐𝐵𝑃,𝑗,𝑚𝑎𝑥 , 

              𝑖 ∈ {𝑅𝑀1, 𝑅𝑀3, 𝐶𝑊}, 𝑗 ∈ 𝐵𝑃𝑠, 
 

where 𝑐𝑅𝑀1and 𝑐𝑅𝑀3 are cost factors and the mass flows, �̇�𝑖 (𝑡), of the raw materials 

RM1 and RM3 and the CW are the control variables, i.e., degrees of freedom. To enforce 

a minimal MP production, we add a constraint for the final produced amount of MP, 

𝑚𝑀𝑃(𝑡𝑒𝑛𝑑), to at least matching the currently established strategy (cur), 𝑚𝑀𝑃,𝑐𝑢𝑟(𝑡𝑒𝑛𝑑). 
We consider additional constraints that include limits on the reactor temperature, 𝑇𝑅, the 

reactor level 𝑉𝐿, the mass flows, �̇�𝑖(𝑡), and concentrations of BPs, 𝑐𝐵𝑃,𝑗. The upper and 

lower limits on the reactor temperature and level arise from safety considerations, the 

upper limits on the mass flows are based on plant equipment limits, and the upper limit 

on the BPs’ concentrations results from process downstream quality limits. Furthermore, 

the process control system only allows for a maximum number of four step changes in 

the mass flow of RM1 which we formulated as a multi-stage problem with free stage 

duration. For solving the optimization problem (Eq. 1), we apply DyOS with the same 

integrator and optimizer settings as for parameter estimation (cf. Section 3). 

 
Figure 5: Optimized vs. currently established feeding strategy for RM1, RM3, and CW. 

Figure 5 illustrates the currently established (dashed line) and optimized (full line) feed. 

According to the optimization results, RM1 should be fed in three steps with different 

flow rates instead one constant rate. The optimized RM3 feed is at a higher rate from the 

start of the batch and is then reduced almost linearly instead of in three steps. The cooling 

water feed is also at the maximum possible rate and changes only slightly compared to 

the established routine; specifically, the reactor is cooled longer. With the optimized 

feeding strategy, we find the produced MP amount being at the lower bound, i.e., 

matching the MP amount produced with the established feed profiles, which is expected 

as it is enforced by a constraint in the problem formulation. At the same time, the amounts 

of RM1 and RM3 can be reduced by 6% and 17%, respectively. This corresponds to about 

10% cost savings as the same MP amount is produced by using less raw material. The 

main reasons for the reduced amount of required raw materials are higher main product 
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yield, less byproduct production, and less overfeeding of RM3. We are currently working 

on the experimental validation of these results. 

5. Conclusions 

We present the dynamic modeling and optimization of an industrial 20 m³ fed-batch 

reactor. We first develop a mechanistic reactor model and then collect experimental data 

on the reaction process and perform parameter estimation using our in-house dynamic 

optimization software DyOS. Based on the developed model, we apply DyOS to identify 

promising feeding strategies for which the model suggests improved reaction yield and 

higher economic profit by 10 %. The experimental validation of the identified feeding 

strategies is planned as the next step with the overall goal to establish a new feeding 

routine for the industrial operation of the reactor. 

Future work could include further model validation and potentially improvements of the 

model, e.g., by collecting additional experimental data that can be used for parameter 

fitting. Next to model refinements, more fine-grained feed profiles could be investigated 

to incentivize changes to the current process control system limitations. Furthermore, the 

presented method could be transferred to other processes with fed-batch reactors. 
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