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Abstract

Computational Fluid Dynamics (CFD) is a powerful tool which can help with the ge-

ometry optimization of continuous milli-scale reactors, which often are highly complex

devices. Attempting to perform this optimization by manually modifying and test-

ing geometry configurations can however be tedious and computationally inefficient.

Addressing this problem, we present a framework in which the CFD software COM-

SOL Multiphysics is coupled with the multi-objective Bayesian Optimization algorithm

TSEMO (Thompson sampling efficient multiobjective optimization), implemented in

MATLAB. The mixing element geometry of a Miprowa Lab millireactor is parameter-

ized, and the framework automatically executes CFD simulations to minimize areas

of stagnating flow and maximize the mixing performance. The framework is able to

find Pareto-optimal reactor variations, and can easily be adapted for other devices and

objectives.

1 Introduction

Polymerization processes in the (specialty) chemical industry increasingly rely on continuous

flow processing1–6. Continuous polymerization reactors are promising, because their large

surface to volume ratio allows for faster heat removal and better temperature control than

batch reactors7,8. Furthermore, this ratio can be kept constant during scaleup, reducing the

need for pilot stages making it easier to go from lab- to production scale9. However, contin-

uous polymerization reactors, especially milli-scale reactors with internal mixing elements,

can be highly complex devices, which can be difficult to characterize experimentally, as many

of their properties are not readily available via measurements. Additionally, their small size

renders them especially prone to fouling10,11.

Computational fluid dynamics (CFD) can be a useful tool to overcome these challenges

and understand fouling, and is increasingly being used to study milli- and microscale de-

vices12–23: Firstly, it enables the evaluation of flow process properties at arbitrary points
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inside the computational domain, thus offering a look into the reactor. Secondly, it provides

a way to evaluate the effect of modifications to the reactor design or process parameters.

In previous work, we employed CFD successfully to find geometry modifications which

reduced the fouling potential in the Miprowa Lab millireactor24. However, we only considered

manual specification of modifications which requires a lot of user input and we did not allow

for configurations strongly deviating from the original design. We thus herein propose to

overcome these challenges by coupling the CFD solver with a suitable optimization algorithm.

Optimization algorithms can generally be divided into gradient-based and gradient-free

methods25. Gradient-based methods require the evaluation of the derivatives of the objective

and constraint function(s) with respect to the design parameters. In principle, these can be

calculated via sensitivities or adjoints, propagated through the CDF calculations, see e.g.26,27.

In many cases, such as when dealing with proprietary software where the source code is not

available, the derivatives are however inaccessible. It is indeed possible to approximate the

derivatives of such black-box functions via finite differences, but this is expensive computa-

tionally, as each function evaluation corresponds to the solution of a CFD simulation. On the

other hand, gradient-free methods often require a very large number of iterations, again re-

sulting in high computational cost. Bayesian Optimization is a gradient-free method suitable

for expensive black-box evaluations (via small number of required function evaluations)25,28.

Combining Bayesian optimization with CFD for geometry design and shape optimization

is becoming increasingly popular, see e.g.25,29,30, but still a relatively new approach. In

the area of chemical reactor design, optimizations have been reported e.g., for stirred tank

reactors,31 fluidized bed reactors,32 and liquid-phase jet reactors,33 but overall, few studies

have been reported thus far. In particular, to our knowledge, no studies describing continuous

flow reactors with internal mixing elements have been investigated in previous works. Due to

their particularly complex geometries, these types of reactors represent especially interesting

and challenging applications.

We present a framework in which the CFD software COMSOL Multiphysics34,35 is cou-
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pled with the Bayesian Optimization algorithm TSEMO (Thompson sampling efficient mul-

tiobjective optimization)36,37, implemented in MATLAB. The mixing element geometry of

a Miprowa millireactor24,38,39 is parameterized, and the framework automatically runs and

evaluates CFD studies to minimize areas of stagnating flow and maximize the mixing per-

formance. The framework is able to find Pareto-optimal reactor variations, and can easily

be adapted for other devices and objectives. Our work shows that Bayesian optimization

and CFD can be applied successfully to complex devices like continuous flow milliscale mix-

ers and reactors. Further, by quantifying the improvements that can be achieved, and the

tradeoffs that have to be made, it enables a more meaningful discussion about the merits

and limits of geometry optimization in this context.

2 Methods

In this section, we discuss the models and methods used, starting with a description of the

millireactor, explaining the objective functions used for the optimization, and describing the

CFD setup, the optimization method and their coupling.

2.1 Millireactor model

The Miprowa Lab millireactor was developed by Ehrfeld Mikrotechnik40. It was designed for

single- or multiphase liquid-liquid or liquid-gas applications, can be operated at a wide range

of temperatures and pressures, and has an effective fluid volume of about 20 mL. The reactor

contains eight identical process channels, which are arranged in series, and can be heated

or cooled by an enveloping thermal fluid. The individual channels are rectangular, with an

interior cross-section of 12 mm by 1.5 mm and a length of 300 mm. They contain three layers

of mixing elements, forming a three-dimensional herringbone pattern. The general form of

a reactor channel is shown in Figure 1. The rectangular form (as opposed to round) is

chosen by Ehrfeld Mikrotechnik for two reasons: i the surface area of the channels is larger,
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enhancing heat transfer; ii the structure of the mixing elements is simpler, making their

manufacture comparatively simple. This allows for the use and even adaptation of different

elements, depending on the specific reactor application.

We shortened the channel to L=50 mm to speed up the computation time. This should

not qualitatively impact the results because of the periodicity of the design and the fact that

the impact of the inlet section on the velocity field is small, leading to well-developed flow

even shortly after the inlet (cf. left side of Figure 2). The shape of the channel is determined

by the angle of the mixing element fins α, the thickness of the fins d and their distance s (cf.

Figure 1). We consider these parameters as the optimization variables.

The optimizations use three reference configurations as a starting point, all sharing a fin

thickness of d = 1 mm and a fin distance of s = 2 mm, with angles of α = 30°, α = 45°

and α = 60°, respectively. To ensure that the configurations proposed by the optimization

algorithm still bear a meaningful resemblance to the original geometries, and still consist of

a single, well-connected domain, we impose the following bounds on the parameters: The

angle α is allowed to vary between 15° and 75°, and d and s both can take a minimum value

of 0.5 mm and a maximum value of 2.5 mm.

Figure 1: The geometry and parameters of the reactor. Shown is the effective interior
volume, i.e. the volume taken up by the fluid; the gaps are the space taken up by the mixing
elements.
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2.2 Objective functions

We optimize the reference geometry of the Miprowa millireactor with respect to two compet-

ing objectives: The areas in which stagnating flow occurs, and the mixing variance, which

are to be minimized. We explain these optimization objectives and the rational behind our

choice in some detail in the following sections.

2.2.1 Minimize stagnating flow

Areas with stagnating flow can be prone to fouling41, and should thus be minimized as far as

possible. Since there is no clearly established definition of when a flow is said to be stagnant,

in the present work we regard a velocity magnitude |v| of 5 % of the inlet velocity vin as the

cutoff point, and all points in the domain with this value or less are designated stagnant.

This is expressed in the weight function W (v) (see Equation(1)). We then integrate over the

computational domain, and divide by the volume of the domain V , to get a dimensionless

number for the magnitude of stagnating areas. This magnitude is denoted S for “stagnant”

(2).

W (v) :=

 0 , |v|
vin

> 0.05

1 , |v|
vin
≤ 0.05

(1)

S(v) :=
1

V

∫
V

W (v) dV (2)

2.2.2 Minimize mixing variance

The reactor specifically aims for mixing in the cross-section to achieve near uniform concen-

tration. Thus, variation of mixing should be minimized. We evaluate mixing by measuring

the concentration ci of a passive tracer substance which is added at the reactor inlet (cf.

Figure 2). The mean concentration and variance of concentration are computed according

to Equations (3) and (4). As objective function, we use the coefficient of variation CV ,
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which is the ratio of the square root of the variance to the mean (5). In the ideal case of a

perfect mixture, CV would be equal to zero.

Mean concentration: E(ci) :=
1

V

∫
V

ci dV (3)

Variance of concentration: V(ci) :=
1

V

∫
V

(
ci − E(ci)

)2
dV (4)

Coefficient of variance: CV (ci) :=

√
V(ci)

E(ci)
(5)

Figure 2: The flow field and concentration distribution for one of the reference geometries.
(α=45°, d=1 mm, s=2 mm)

2.3 CFD setup

To keep the solution time of each individual CFD computation low, we introduce a number of

simplifying assumptions. We assume the fluid passing through the reactor to be pure water

at room temperature (20 °C). We consider a laminar, incompressible, isothermal steady-

state flow. We model the mixing via a passive tracer, with the diffusion coefficient set to

1× 10−9 m2/s, corresponding to water-in-water diffusion. As the fluid properties remain

constant at all times, we assume that the mixing does not have any effect on the fluid flow,

but is affected by it.
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In principle, Bayesian optimization can be used in tandem with any CFD solver. We use

the commercial finite-element based software package COMSOL Multiphysics, version 5.134

to run the CFD simulations. We choose COMSOL because it is well suited for problems

containing multiple phenomena, it has been already used in previous work24, and it provides

interfaces for coupling with external software (cf. Section 2.5).

We utilize Physics interfaces for laminar flow and transport of diluted species. We first

compute the steady state flow field and in a transient second step the propagation of the

tracer concentration. The simulation meshes consist of about 3× 105 elements. For selected

cases, we checked also the grid convergence. One simulation takes about 6.5 h on average

using the default solver settings recommended by COMSOL.

2.4 Bayesian Optimization

Recall that Bayesian optimization is a technique for locating (near) global optimal solutions

of a black-box objective function, meaning no information other than the function value, such

as derivatives, are needed. The objective is treated as an arbitrary function captured by a

stochastic model, which is updated iteratively as more data become available. Bayesian opti-

mization is a data-efficient method suitable for dealing with expensive to evaluate functions,

because it can efficiently draw probabilistic conclusions from analyzing a minimal amount of

data28. In this work, we use the Thompson sampling efficient multiobjective optimization

(TSEMO)37 algorithm, which can handle multiple, conflicting objective functions. TSEMO

uses Gaussian processes to build surrogate models of the objective functions. Then, TSEMO

uses the cheap surrogate models to identify the most promising evaluation point for the next

(expensive) function evaluation, a CFD simulation in our case. The CFD simulation is per-

formed, evaluated, and the result used to update the surrogate models to find the new best

evaluation point in an iterative fashion. Further, all simulations are added to the solution

data set. While intermediate results are often discarded in other optimization methods, here

they are incorporated to find, and may be part of, the Pareto frontier. The identification
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of the most promising CFD simulations is done by a multi-objective genetic algorithm that

optimizes random samples which are drawn from the Gaussian processes. Notably, this in-

ternal optimization problem could also be solved to global optimality using deterministic

global methods42. Overall, TSEMO cannot provide guarantees of global solution but often

determines a good approximation of the true Pareto front with significantly less iterations

than genetic algorithms36,37.

2.5 Coupling of CFD and optimization

To prepare the optimization cycle, the first step is the setup of the CFD case file template.

The COMSOL Multiphysics graphical user interface is used to create the starting geometry,

define the physics interfaces for fluid flow and species transport, and select the appropri-

ate meshing and solver settings. The case file is then saved as a MATLAB (.m) file that

contains all the information necessary to run the CFD simulation for the starting geometry.

After this initial setup, COMSOL is only accessed via MATLAB through the LiveLink in-

terface. The objective functions are implemented in MATLAB, and a set of initial geometry

configurations is created consisting of reference configurations and configurations obtained

via augmenting latin hypercube sampling (aLHS). For each configuration, a COMSOL case

file is created starting from the template by modifying the respective geometry parameters.

Next, the COMSOL simulations are run and the results evaluated via LiveLink43. These

results form the initial data set used for the actual optimization. A Bayesian acquisition

step is performed, using a stochastic model to determine new geometric parameters for the

next CFD simulation. The results of this simulation in terms of the corresponding objective

function values are added to the data set, and the cycle continues until a termination cri-

terion is met. In this case, the optimization algorithm is stopped if a maximum number of

iterations is reached.
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3 Results and discussion

The aim of the Bayesian optimization algorithm was to efficiently find geometry configura-

tions minimizing the objective functions S and CV . Starting from a data set containing the

three reference configurations and seven additional configurations obtained via Latin hyper-

cube sampling, the algorithm successively selected 70 further configurations to evaluate, for

a total of 80 simulations. The simulations were run in series, the combined runtime was 22

days (wall time). The number of iterations (and thus also runtime) is orders of magnitude

less than what a brute-force approach would require. For example, a reasonable grip would

be 60 points for angle α (increments of 1°) and 20 points for each of the fin thickness d and

distance s (increments of 0.1 mm) resulting in a total of 24,000 simulations.

The objective function values of the configurations are plotted in Figure 3. The blue

crosses and green points denote the initial data set, the red circles the configurations chosen

by the TSEMO algorithm. Most of the proposed geometries improve at least one of the ob-

jective function values significantly compared to the reference designs, with many improving

both. Figure 4 shows a parallel coordinates plot of the the values of the geometric param-

eters with their corresponding objective function values. Each line in the plot represents

one configuration, with the geometric parameter values plotted on the first three axes, and

the objective values plotted on the middle-right and far-right axes. Thin lines mean the

configurations are dominated, i.e. at least one other configuration improves both objective

function values, and thick lines mean the configurations are dominating, i.e. Pareto-optimal.

It is apparent that the mixing bar angle α seems to have the largest effect on the objective

functions, with all dominating configurations featuring angles greater than 65°, whereas no

clear preference can be assigned regarding the mixing element thickness d or distance s.

In the following, we examine three configurations more closely, and compare them to

the reference configurations. These are the configurations yielding the least stagnant areas,

i.e. the lowest value of the objective function S, the one with the best mixing, i.e. the

lowest value of CV , and a Pareto-optimal tradeoff. For comparison, we take the reference

10



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1

1.1

1.2

1.3

1.4

1.5

1.6

Initial Data
TSEMO Algorithm
Pareto Front of GP Mean

S

Figure 3: Objective function values of S and CV . The blue crosses and green points denote
the initial data set, the red circles the configurations chosen by the TSEMO algorithm.

configurations with the best values of S and CV , respectively. They will be denoted Sref

and CVref henceforth. Table 1 gives the geometric parameters of the configurations and the

corresponding absolute values of the objective functions S and CV , and Table 2 gives the

relative improvements of the selected optimization results compared to Sref and CVref .
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S

Figure 4: Parallel coordinates plot for α, d, s (cf. Figure 1) and the objectives S and CV .
Every line in the plot corresponds to one simulated configuration, with color corresponding
to the mixing bar angle α.

Table 1: Geometric parameters and objective function values of the three reference cases
and selected optimization results.

Configuration α in [◦] d in [mm] s in [mm] S in [ 1 ] CV in [ 1 ]

Ref30◦ = Sref 30 1 2 0.0208 1.2609

Reference Ref45◦ = CVref 45 1 2 0.0355 1.1815

Ref60◦ 60 1 2 0.0451 1.2025

Smin 71.16 2.5 0.74 0.0155 1.2918

TSEMO (S/CV )tradeoff 69.64 2.17 1.57 0.0167 1.0692

CVmin 70.51 1.45 1.23 0.0509 1.0091
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Table 2: Relative improvement/decrease of the objectives S and CV of the Bayesian opti-
mization results with respect to the reference configurations Sref and CVref (rounded).

. . . compared to . . . ∆Srel ∆CVrel to . . . ∆Srel ∆CVrel

Smin Sref −26% +3% CVref −57% +9%

(S/CV )tradeoff Sref −20% −15% CVref −53% −10%

CVmin Sref +145% −20% CVref +43% −15%

3.1 Least stagnating flow areas

We show in Figure 5 the configuration leading to a minimal value of S.

Compared to Sref , the stagnating flow areas are reduced by 26 %, while the mixing vari-

ance is increased by 3 %. The reduction of stagnating areas can be attributed to two factors.

For one, the corners at the top and bottom of the reactor channel are well-aligned. Badly-

aligned corner regions (cf. Figure 6) can form “dead zones”, which have a heightened fouling

potential. The second reason lies in the fact that the thickness of the mixing element fins d

is at the maximum allowed value and the space between the fins s is rather small, leading

to a reduction in the effective reactor volume and an increase of the average flow velocity.

Figure 5: Configuration with the least stagnant areas. The geometric parameters are α =
71.16°, d = 2.5 mm and s = 0.74 mm.

3.2 Least mixing variance

Figure 6 shows the configuration yielding a minimum value of CV . Compared to CVref ,

the mixing variance is reduced by 15 %, while the stagnating areas are increased by 43 %.
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Interestingly, while this configuration minimizes the mixing variance over the whole domain,

the corner regions at the bottom of the channel are actually not that well mixed, indicating

that it might be beneficial to give more weight to the top and bottom regions of the channel.

Similarly, one might, e.g., neglect the first half of the channel to reduce the influence of the

inlet section.

Figure 6: Configuration with the best mixing. The geometric parameters are α = 70.51°,
d = 1.45 mm and s = 1.23 mm.

3.3 Pareto-optimal trade-off

The optimization algorithm was able to find eight configurations, including the two just

discussed, which dominate all other tested configurations, and are assumed to be close to or

on the true Pareto front. Due to the competing nature of the selected objective functions,

no single configuration can claim to give the overall best result. Instead, a trade-off has to

be selected by the user, depending on the specific requirements of the intended use-case.

Here, we select the configuration in the bottom-left corner of Figure 3, as its S value is

still the second best found by the algorithm, and the corresponding CV value is drastically

reduced compared to the S-optimal case. Figure 7 shows the results for this configuration.

We observe that it reduces the stagnating flow areas by 19.7 % compared to Sref , while still

decreasing the mixing variance by 15.2 %. Compared to CVref , the stagnating flow areas are

reduced by 53 %, and the mixing variance by 10 %. The configuration retains the aligned

corners of the S-optimal case, but has a larger effective interior volume more in line with
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the CV -optimal and reference configurations.

Figure 7: A tradeoff between the two objectives. The geometric parameters are α = 69.64°,
d = 2.17 mm and s = 1.57 mm.

4 Conclusions

Continuous millireactors play an increasingly important role in the chemical industry. They

are highly complex devices and their geometric optimization important. Numerical opti-

mization can help to improve their designs, in additional to manual adjustments. We use

the multi-objective Bayesian optimization algorithm TSEMO to generate improved geome-

try configurations for the Miprowa Lab millireactor. Two objective functions were optimized

for, namely minimizing the stagnating flow areas and the mixing variance in the reactor.

The proposed configurations yielded improvements compared to the best reference cases of

up to 26 % and 15 percent, respectively. These results show that Bayesian optimization can

be utilized successfully for geometry optimization of chemical reactors. The TSEMO al-

gorithm used in this work is highly adaptable and can work with an arbitrary number of

objective functions and parameters. It follows that, as long as the geometry can be suitably

parameterized, the demonstrated method can be adapted to different devices and objective

functions as required. While the results prove that the method is working as intended, they

could be further improved by taking into account additional objectives or adapting the ones

used. For example, the effect of the suggested modifications on the pressure loss was not of

15



interest here, but could be incorporated as an additional objective function. Similarly, the

mixing variance was calculated over the whole reactor domain, potentially giving too much

weight to the inlet area. Further work could attempt to explore the effects of, e.g., only

evaluating the mixing quality in the second half of the reactor channel.
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