001     1022258
005     20250203103347.0
024 7 _ |2 doi
|a 10.48550/arXiv.2311.06074
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-01376
037 _ _ |a FZJ-2024-01376
100 1 _ |0 P:(DE-HGF)0
|a Pastorelli, Elena
|b 0
|e Corresponding author
245 _ _ |a Two-compartment neuronal spiking model expressing brain-state specific apical-amplification, -isolation and -drive regimes
260 _ _ |b arXiv
|c 2023
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1710496112_28011
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a There is mounting experimental evidence that brain-state specific neural mechanisms supported by connectomic architectures serve to combine past and contextual knowledge with current, incoming flow of evidence (e.g. from sensory systems). Such mechanisms are distributed across multiple spatial and temporal scales and require dedicated support at the levels of individual neurons and synapses. A prominent feature in the neocortex is the structure of large, deep pyramidal neurons which show a peculiar separation between an apical dendritic compartment and a basal dentritic/peri-somatic compartment, with distinctive patterns of incoming connections and brain-state specific activation mechanisms, namely apical-amplification, -isolation and -drive associated to the wakefulness, deeper NREM sleep stages and REM sleep. The cognitive roles of apical mechanisms have been demonstrated in behaving animals. In contrast, classical models of learning spiking networks are based on single compartment neurons that miss the description of mechanisms to combine apical and basal/somatic information. This work aims to provide the computational community with a two-compartment spiking neuron model which includes features that are essential for supporting brain-state specific learning and with a piece-wise linear transfer function (ThetaPlanes) at highest abstraction level to be used in large scale bio-inspired artificial intelligence systems. A machine learning algorithm, constrained by a set of fitness functions, selected the parameters defining neurons expressing the desired apical mechanisms.
536 _ _ |0 G:(DE-HGF)POF4-5234
|a 5234 - Emerging NC Architectures (POF4-523)
|c POF4-523
|f POF IV
|x 0
536 _ _ |0 G:(DE-HGF)POF4-5231
|a 5231 - Neuroscientific Foundations (POF4-523)
|c POF4-523
|f POF IV
|x 1
536 _ _ |0 G:(DE-HGF)POF4-5232
|a 5232 - Computational Principles (POF4-523)
|c POF4-523
|f POF IV
|x 2
536 _ _ |0 G:(EU-Grant)945539
|a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |0 G:(EU-Grant)800858
|a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)
|c 800858
|f H2020-SGA-INFRA-FETFLAG-HBP
|x 4
588 _ _ |a Dataset connected to DataCite
650 _ 7 |2 Other
|a Neurons and Cognition (q-bio.NC)
650 _ 7 |2 Other
|a Neural and Evolutionary Computing (cs.NE)
650 _ 7 |2 Other
|a FOS: Biological sciences
650 _ 7 |2 Other
|a FOS: Computer and information sciences
700 1 _ |0 P:(DE-Juel1)161462
|a Yegenoglu, Alper
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Kolodziej, Nicole
|b 2
700 1 _ |0 P:(DE-Juel1)186881
|a Wybo, Willem
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Simula, Francesco
|b 4
700 1 _ |0 P:(DE-Juel1)165859
|a Diaz, Sandra
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Storm, Johan Frederik
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Paolucci, Pier Stanislao
|b 7
773 _ _ |a 10.48550/arXiv.2311.06074
|t arXiv
|y 2023
856 4 _ |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1022258
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161462
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)186881
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165859
|a Forschungszentrum Jülich
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-523
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5234
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Neuromorphic Computing and Network Dynamics
|x 0
913 1 _ |0 G:(DE-HGF)POF4-523
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5231
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Neuromorphic Computing and Network Dynamics
|x 1
913 1 _ |0 G:(DE-HGF)POF4-523
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5232
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Neuromorphic Computing and Network Dynamics
|x 2
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 3
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21