| Home > Publications database > Two-compartment neuronal spiking model expressing brain-state specific apical-amplification, -isolation and -drive regimes > print |
| 001 | 1022258 | ||
| 005 | 20250203103347.0 | ||
| 024 | 7 | _ | |2 doi |a 10.48550/arXiv.2311.06074 |
| 024 | 7 | _ | |2 datacite_doi |a 10.34734/FZJ-2024-01376 |
| 037 | _ | _ | |a FZJ-2024-01376 |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Pastorelli, Elena |b 0 |e Corresponding author |
| 245 | _ | _ | |a Two-compartment neuronal spiking model expressing brain-state specific apical-amplification, -isolation and -drive regimes |
| 260 | _ | _ | |b arXiv |c 2023 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)25 |2 PUB:(DE-HGF) |a Preprint |b preprint |m preprint |s 1710496112_28011 |
| 336 | 7 | _ | |2 ORCID |a WORKING_PAPER |
| 336 | 7 | _ | |0 28 |2 EndNote |a Electronic Article |
| 336 | 7 | _ | |2 DRIVER |a preprint |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 DataCite |a Output Types/Working Paper |
| 520 | _ | _ | |a There is mounting experimental evidence that brain-state specific neural mechanisms supported by connectomic architectures serve to combine past and contextual knowledge with current, incoming flow of evidence (e.g. from sensory systems). Such mechanisms are distributed across multiple spatial and temporal scales and require dedicated support at the levels of individual neurons and synapses. A prominent feature in the neocortex is the structure of large, deep pyramidal neurons which show a peculiar separation between an apical dendritic compartment and a basal dentritic/peri-somatic compartment, with distinctive patterns of incoming connections and brain-state specific activation mechanisms, namely apical-amplification, -isolation and -drive associated to the wakefulness, deeper NREM sleep stages and REM sleep. The cognitive roles of apical mechanisms have been demonstrated in behaving animals. In contrast, classical models of learning spiking networks are based on single compartment neurons that miss the description of mechanisms to combine apical and basal/somatic information. This work aims to provide the computational community with a two-compartment spiking neuron model which includes features that are essential for supporting brain-state specific learning and with a piece-wise linear transfer function (ThetaPlanes) at highest abstraction level to be used in large scale bio-inspired artificial intelligence systems. A machine learning algorithm, constrained by a set of fitness functions, selected the parameters defining neurons expressing the desired apical mechanisms. |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5234 |a 5234 - Emerging NC Architectures (POF4-523) |c POF4-523 |f POF IV |x 0 |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5231 |a 5231 - Neuroscientific Foundations (POF4-523) |c POF4-523 |f POF IV |x 1 |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5232 |a 5232 - Computational Principles (POF4-523) |c POF4-523 |f POF IV |x 2 |
| 536 | _ | _ | |0 G:(EU-Grant)945539 |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
| 536 | _ | _ | |0 G:(EU-Grant)800858 |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858) |c 800858 |f H2020-SGA-INFRA-FETFLAG-HBP |x 4 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 650 | _ | 7 | |2 Other |a Neurons and Cognition (q-bio.NC) |
| 650 | _ | 7 | |2 Other |a Neural and Evolutionary Computing (cs.NE) |
| 650 | _ | 7 | |2 Other |a FOS: Biological sciences |
| 650 | _ | 7 | |2 Other |a FOS: Computer and information sciences |
| 700 | 1 | _ | |0 P:(DE-Juel1)161462 |a Yegenoglu, Alper |b 1 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Kolodziej, Nicole |b 2 |
| 700 | 1 | _ | |0 P:(DE-Juel1)186881 |a Wybo, Willem |b 3 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Simula, Francesco |b 4 |
| 700 | 1 | _ | |0 P:(DE-Juel1)165859 |a Diaz, Sandra |b 5 |u fzj |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Storm, Johan Frederik |b 6 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Paolucci, Pier Stanislao |b 7 |
| 773 | _ | _ | |a 10.48550/arXiv.2311.06074 |t arXiv |y 2023 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1022258/files/2311.06074.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1022258 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161462 |a Forschungszentrum Jülich |b 1 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)186881 |a Forschungszentrum Jülich |b 3 |k FZJ |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165859 |a Forschungszentrum Jülich |b 5 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5234 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5231 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 1 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5232 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 2 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 3 |
| 980 | _ | _ | |a preprint |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
| 980 | 1 | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|