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Time discretized dynamics, of Leaky Integrate and Fire (LIF)
neurons for the membrane potential u:
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The computational graph of a time discretized SNN is the one of
a recurrent neural network (RNN) as used in deep learning (DL)

LIF

Linear/Conv

LIF

Linear/Conv

LIF

Linear/Conv

time

t-1 t t+1

⇒ SNNs are RNNs with the Heaviside function Θ
as activation function

Minimization of objective function L by using some form of
stochastic gradient descent with respect to the parameters wij :

wij = wij − η
∂L

∂wij
= wij − η

∂L

∂Sn

∂Sn
∂uk

∂uk
∂wij

To alleviate the zero-gradient issue of the Heaviside function we
use the surrogate gradient method [2], where a smooth and
differentiable surrogate function is used for the gradient
computation in the backward pass:

Souti [t] = Θ(ui − ϑi) :=
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There are many possible choices for the surrogate function [6].
Here we use the SuperSpike surrogate function [5].

In order to train the SNNs we use the standard backpropagation
through time (BPTT) algorithm.

The Graphcore IPU�

The Intelligence Processing Unit (IPU�) from the UK based company Graphcore is
designed to be a massively parallel compute architecture with distributed local memory
ideally suited for multiple data multiple instruction (MIMD) workloads. The latest
generation of the IPU, the BOW-2000 IPU Machine, can deliver up to 1.4 PFLOPS/s of
FP16 AI compute.

The IPU programming paradigm [1] is based on the Bulk Synchronous Parallel (BSP)
model, which features the sequential execution of multiple supersteps composed of:

a local computation phase,

a communication phase,

a barrier synchronization phase.

During each computation phase every IPU-Core� has access only to its dedicated
In-Processor-Memory�, which is 624kB of SRAM. The two together form a so called
IPU-Tile�.

SNNs on the Graphcore IPU�
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Due to the recurrent structure of SNNs we can efficiently
distribute the neurons onto dedicated tiles for the whole training.
Data transfer between tiles is only necessary for the sparse input
spikes and output spike generation. This maximally utilizes the
fast access to locally stored parameters and minimizes data
transfer.

As every processor can execute truly independent programs
during the computation phases with complex control flow, we
believe the IPU is better suited than GPUs to handle sparsity
both in activation as well as in connectivity.

The IPU features very fast intra- and inter-IPU interconnect with
high bandwidth and low latency. This feature becomes especially
useful when designing large scale, distributed SNNs.

The IPU is programmable via the C++ based Poplar® SDK for
very fine grained control and via the Python API of all major
machine learning libraries (Pytorch, Tensorflow, ONNX, ...).

Sparse Spike representation:

In order to make use of the sparse activation of SNNs we use a sparse
spike representation that only stores the indices and the number of
neurons that spiked. A naive implementation would lead to inaccurate
gradients in the backward pass. To circumvent this issue we take a
very similar approach as in [4], by also propagation some information
for neurons that did not spike, but that were close to the threshold.

membrane potential: [0.8, 1.2, -0.5, 0.6, 0.95, 0.1, 0.98]

dense spike representation: [ 0, 1, 0, 0, 0, 0, 0]

sparse spike representation: ([ 1, 4, 6, nan], [1, 3])

Performance Benchmarking

In order to benchmark the SNN implementation for the IPU we evaluate the throughput of multiple SNN models using the N-MNIST dataset [3] and compare to dense implementation on a GPU (NVIDIA GeForce RTX 3090). We
demonstrate behavior for fully-connected multi-layer SNN architectures. The results on this poster are, however, not generated with the latest IPU generation. For the newest version performance gains of up to 40% can be expected.

The left figure demonstrates the acceleration factor in the throughput on
the IPU compared to the GPU for SNN training. We keep the size of the
network with about 3000 neurons fixed and vary the the structure of the
network, meaning the number of layers. The different curves depict different
choices for the maximally allowed neuron activity in one timestep. The right
figure shows the performance of multi IPU implementations. We keep the
network size per IPU fixed and scale the number of IPU. The performance is
compared to the corresponding dense architecture on the GPU.

From our current results we can identify three key messages:

1 Currently, we can achieve 3-5x higher throughput for realistic
training scenarios with the IPU compared to a high-end consumer GPU

2 The IPU implementations performs better for more complex model
architectures and therefore for more complex connectivity patterns.

3 The IPU implementations demonstrates good scaling behavior for
model parallel implementations of SNN, which gives the hope for large
scale distributed SNN training on larger IPU systems.

Execution Traces
Using an analysis tool developed from Graphcore for the IPU, it is possible to get detailed information about the execution and memory allocation of the
executed programs. Here, you can see an example of the execution traces, meaning cycle by cycle information which operations were performed. The left
figure displays the execution trace for all operations performed during one timestep in the forward pass, the right figure for the backward pass. Red color
depicts a local computation phase, blue a communication and exchange phase, and yellow a synchronization phase.
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