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Neuron Dynamics

Sparse MatMul

Sparse Sin[t− 1]

Sparse Sout[t]

Time discretized dynamics, of Leaky Integrate and
Fire (LIF) neurons for the membrane potential u:

ui [t + 1] = α ui [t](1− Souti [t]) +
1

C
Ii [t] (1)

Souti [t + 1] = Θ(ui [t + 1]− ϑi) (2)

Ii [t + 1] =
∑

wij S
in
j [t + 1] (3)

Compressed sparse spike representation for both
efficient communication and computation (Eq. 2-3)

Distributed neuron allocation on the Graphcore
IPU exploiting its distributed memory architecture
composed of 1472 IPU-Cores with dedicated local
In-Processor-Memory (628kB of SRAM per
IPU-Core)

Drastically Improved SNN-Training Throughput on the IPU by Utilizing Activation Sparsity

We benchmarked the sparse SNN implementation for the
IPU by evaluating the throughput of multiple SNN models
using the SHD [2], N-MNIST [4] and DVSGesture [1] dataset
and compared to an equivalent dense implementation on a
GPU (NVIDIA GeForce RTX 3090, V100, A100).

Constant network size with 2944 neurons.

Two settings: “Fixed activity” (top), where we force all
neurons to spike, approaching the lower bound in
throughput and “natural activity” (bottom) based on
random weight initialization, resulting in a conservative
approximation of the upper bound in throughput.

The measurement of the acceleration factor includes all
necessary operations for the training process, meaning the
forward pass, the backward pass to calculate the gradients,
and the weight update.

By utilizing the sparse activations we achieve substantial gains
in throughput on the IPU by at least a factor of 5-10×
compared to the GPU.

For more extreme levels of activation sparsity which
are still relevant for training runs in practice, even higher
acceleration factors of 15-20× can be achieved.
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Great Scalability to Larger Networks and Multi-IPU Settings
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Left: Single IPU scaling

Larger networks show increasingly higher
acceleration compared to the GPU baseline.

Increase in network size is achieved by modifying
the number of neurons that are allocated on each
tile and by extending the number of layers in the
network architecture accordingly.

Right: Multi-IPU scaling

Weak scaling results on SHD dataset with
“natural activity” at max activity of 5% up to
sizes of 190k neurons and 180 million parameters.

Shifting from communication-bound towards
compute-bound workloads by increasing
either the batchsize or the network size per IPU
improves the scaling behavior.

No Slowdown in Training Convergence due to Sparse Training

In order to train the SNNs we use a backpropagation through time
(BPTT) algorithm.

We use a sparse implementation of surrogate gradient method
[3, 7, 6], where a smooth and differentiable surrogate function is
used for the gradient computation in the backward pass. Similar to
[5] also propagate information for some neurons that did not spike
by introducing a secondary threshold for the gradient computation:

Souti [t] = Θ(ui − ϑi) :=

{
1, ui − ϑi ≥ 0

0, ui − ϑi < 0

∂Si
∂ui

[t] :=

{
(β|ui − ϑi | + 1)−2 , ui − ϑgrad ≥ 0

0, ui − ϑgrad < 0

Using this approach we observe no reduction in neither the final
test accuracy (left) nor in the training convergence, meaning the
number of epochs required to reach the best test accuracy (right).
→ The demonstrated increase in training throughput on the
IPU directly translates to a reduction in overall training
time.
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