Exploiting Sparsity for Accelerated
SNN Training on Graphcore IPUs

Jan Finkbeiner, Emre Neftci
jan.finkbeiner@fz-juelich.de, e.neftci@fz-juelich.de

JULICH

Forschungszentrum

/.

R Distributed Neuron Allocation---- - - - --- — -Sparse Spike Representationﬁ\ -Sparse LIF - ----- —, = Time discretized dynamics, of Leaky Integrate and
: IPU-Core In-Processor-Memory : : s 5 1 o : Sparse Gout # ! Fire (LIF) neurons for the membrane potential u:
I S — _ _ 1
| e L T ~ & & Ygrad - - A I uilt + 1] = g1 — S + = 4[H (1)
| " Neuron 0 wWo O ho C;)Q 2 Eij () | A t: ¢
| | Owo . =S [. M SOUt 4+ 1] = O(uj[t +1] — ¥)) (2)
Eq. (1-3) "~~~ "~~~ ~~~—~ O ERTER= N Sparse Spike Gen | ror |
Ba (1-8) T = > = NI I He+11= wy SP[e+ 1] (3)
{ oL 2, O | — — — | | | I I /|
! I > r ~
: :_1516_11_“_)1} _1_ . _u_]l_ _aiui _}fl_ . 2 | /' g : : NeuronID 01 2 3 45 6 7 : : 5 Neuron Dynamics >: « Compressed sparse spike representation for both
| = | _ N 4B efficient communication and computation (Eq. 2-3)
| I{_l\}e_u;(;n_é - _w_ 5L _h_ o o N @ B : dense [0, 0,11, 0, 0, 0,1, O] | : Sparse MatMul .= Distributed neuron allocation on the Graphcore
| | 2 dwy 72 o’ B, | : Teo ids N | : N Jl IPU exploiting its distributed memory architecture
: Eq. (1—3) ___________________ v ee : | 5Pl ell{ 5 :27 6, 9, nan] S : | > T g : composed of 1472 |PU-Cores with dedicated local
e o 8L . '3 ' num spikes |2, 3 | - I In-P M 28kB of SRAM
: ' Neuron 3 ws aaTLg hs | : | dI')) :5_L] o 57 | o Sparse S'[t — 1] | IrI;U rgcesior emory (628kB of 5 Per
| S W, N gradients 19S5’ 8Sg° OS5’ nan /I '\ /' -\ore

— — — m— — m— m— — m— m— o m— m— o m— o e e e e e e e s e e e e e e e e m— m— m— — — — m— m— — m— m— m— m— — e m— o e e o m— m— e m— m— m— m— — — — m— — m— m— — m— m— m— m— — m— m— m— m— —

Drastically Improved SNN-Training Throughput on the IPU by Utilizing Activation Sparsity

= We benchmarked the sparse SNN implementation for the
IPU by evaluating the throughput of multiple SNN models
using the SHD [2], N-MNIST [4] and DVSGesture [1] dataset

and compared to an equivalent dense implementation on a

GPU (NVIDIA GeForce RTX 3090, V100, A100).

« Constant network size with 2944 neurons.

- Two settings: “Fixed activity” (top), where we force all
neurons to spike, approaching the lower bound in
throughput and “natural activity” (bottom) based on
random weight initialization, resulting in a conservative
approximation of the upper bound in throughput.

hidden layers = 2
hidden layers = 3
hidden layers = 4
hidden layers = 5

20
10

SHD NMNIST

f

as

8
()

2
)}

Q@

DVSGesture

I I I D DD DS DD DD DD D D DS DD D DD DD B B S D DD DD DD DD S DD DD DD D S D DS DD DD B B T DD DD D S B S S S B N EE D D S B B S .

20
10

NMNIST DVSGesture
o8

&

®

= The measurement of the acceleration factor includes all
necessary operations for the training process, meaning the
forward pass, the backward pass to calculate the gradients,
and the weight update.

® @

®
e
®®

@
9 @

Acceleration Factor IPU/A100

= By utilizing the sparse activations we achieve substantial gains
in throughput on the IPU by at least a factor of 5-10x
compared to the GPU.

- For more extreme levels of activation sparsity which
are still relevant for training runs in practice, even higher
acceleration factors of 15-20x can be achieved.

I I I D DD DS DD DD DD DD DD DD DD D DD D B EBEE S D D D DD DD DS D DD DD DD D D DD DD D B B TS D DD D DS DD D DS D EE DN D D DD S B S S .

60 80
Communication Sparsity [%]

Great Scalability to

Larger Networks and Multi-IPU Settings

40 Left: Single IPU scaling

S 2.0 . .
= . g ®— batchsize: 24 @— neurons per tile: 2 o . Larger networks show increasingly higher
< am 18 batchsize: 48 neurons per tile: 4 acceleration compared to the GPU baseline.
= 30 pu p- s batchsize: 96 e— neurons per tile: 8 - Increase in network size is achieved by modifying
g It § e— batchsize: 192 - the number of neurons that are allocated on each
& | 3 1.6 tile and by extending the number of layers in the
LCT3 20 L ® Gj ® @ © network architecture accordingly.
S °/ /P &— max activity: 1.0 % = 14
g » . N pe Right: Multi-IPU scaling
= @ max activity: 2.5 % = o " | |
5 10 o g 1.9 o @ = Weak scaling results on SHD dataset with
@ max activity: 5.0 % = g o “natural activity” at max activity of 5% up to
Q ®— max activity: 10.0 % 7. , o sizes of 190k neurons and 180 million parameters.
< 1.0 = o = o o o - e i ——————————————_
0 —4+V—"T1T"""7T"—"—"—"""7 ' = Shifting from communication-bound towards
2 4 S 16 1 9 4 1 2 4 8 16 compute-bound workloads by increasing
: . ither the batchsi the network si IPU
Number of Neurons per Tile Number of IPUs Number of IPUs CNET TS DATISIAR DF T NETWOTE Sle= P

improves the scaling behavior.

No Slowdown in Training Convergence due to Sparse Training

Best Test Accuracy [%] Training Loss Test Accuracy [%]

= In order to train the SNNs we use a backpropagation through time

) W & & & & &

Garrick Orchard et al. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades. 2015.

Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition System"”. In: 2017 |[EEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
Benjamin Cramer et al. “The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks”. In: |[EEE Transactions on Neural Networks and Learning Systems 33.7 (2022).

Nicolas Perez-Nieves and Dan Goodman. “Sparse Spiking Gradient Descent”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. 2021.

Friedemann Zenke and Surya Ganguli. “SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks”. In: Neural Computation 30.6 (June 2018).

Friedemann Zenke and Tim P. Vogels. “The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks”. In: Neural Computation 33.4 (Mar. 2021).

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks”. In: IEEE Signal Processing Magazine 36.6 (2019).

(BPTT) algorithm. | | 990 | 2 1 10° NMNIST 99 —
= We use a sparse implementation of surrogate gradient method ‘ == ~ é = dense
[3, 7, 6], where a smooth and differentiable surrogate function is BE 08 e 1 0%-aict
used for the gradient computation in the backward pass. Similar to 98.5 I | 5% act
[5] also propagate information for some neurons that did not spike I 102 97 NMNIST e 19 act
by introducing a secondary threshold for the gradient computation: 92.5 @ %: i % ﬁ 104 DVSGesture
out 17 uj — 79,' >0 90.0 i)
577t = ©(uj — v) == x : 80
0, uj—9;<0 80 i
3
%[t] ._ {(5|U/ — dil + 1)_27 uj — Ugrad = 0 g @: ;l s % 10 60 DVSGesture
oui-" ")0 — Vgpag < 0 70 I
I : U grad | | SHD 75
= Using this approach we observe no reduction in neither the final =0 ¢ 6 5
test accuracy (left) nor in the training convergence, meaning the I NMNIST 10
number of epochs required to reach the best test accuracy (right). : : : DV5Gesture o0
— The demonstrated increase in training throughput on the 0 I ¢ SHD 102
'I:I:n:Jedlrectly translates to a reduction in overall training Dense Sparse 10% 5% 1% 0.0 0.5 10 0.0 0.5 1.0
| Maximal Activity Training Process [Epoch / Total Epochs]

	References

