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Drastically Improved SNN-Training Throughput on the IPU by Utilizing Activation Sparsity

= We benchmarked the sparse SNN implementation for the
IPU by evaluating the throughput of multiple SNN models
using the SHD [2], N-MNIST [4] and DVSGesture [1] dataset

and compared to an equivalent dense implementation on a

GPU (NVIDIA GeForce RTX 3090, V100, A100).

« Constant network size with 2944 neurons.

- Two settings: “Fixed activity” (top), where we force all
neurons to spike, approaching the lower bound in
throughput and “natural activity” (bottom) based on
random weight initialization, resulting in a conservative
approximation of the upper bound in throughput.
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= The measurement of the acceleration factor includes all
necessary operations for the training process, meaning the
forward pass, the backward pass to calculate the gradients,
and the weight update.

® @

®
e
®®

@
9 @

Acceleration Factor IPU/A100

= By utilizing the sparse activations we achieve substantial gains
in throughput on the IPU by at least a factor of 5-10x
compared to the GPU.

- For more extreme levels of activation sparsity which
are still relevant for training runs in practice, even higher
acceleration factors of 15-20x can be achieved.
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Great Scalability to

Larger Networks and Multi-IPU Settings

40 Left: Single IPU scaling
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improves the scaling behavior.

No Slowdown in Training Convergence due to Sparse Training

Best Test Accuracy [%] Training Loss Test Accuracy [%]

= In order to train the SNNs we use a backpropagation through time
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