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SNNs and Deep Learning

Time discretized dynamics, of Leaky Integrate and Fire (LIF)
neurons for the membrane potential u:
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1

C
Ii [t − 1]

Souti [t] = Θ(ui [t]− ϑi)
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The computational graph of a time discretized SNN is the one of
a recurrent neural network (RNN) as used in deep learning (DL)
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⇒ SNNs are RNNs with the Heaviside function Θ
as activation function

Minimization of objective function L by using some form of
stochastic gradient descent with respect to the parameters wij :
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To alleviate the zero-gradient issue of the Heaviside function we
use the surrogate gradient method [4], where a smooth and
differentiable surrogate function is used for the gradient
computation in the backward pass:

Souti [t] = Θ(ui − ϑi) :=
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There are many possible choices for the surrogate function [8].
Here we use the SuperSpike surrogate function [7].

In order to train the SNNs we use the standard backpropagation
through time (BPTT) algorithm.

The Graphcore IPU�

The Intelligence Processing Unit (IPU�) from the UK based company Graphcore is
designed to be a massively parallel compute architecture with distributed local memory
ideally suited for multiple data multiple instruction (MIMD) workloads. The latest
generation of the IPU, the BOW-2000 IPU Machine, can deliver up to 1.4 PFLOPS/s of
FP16 AI compute.

The IPU programming paradigm [3] is based on the Bulk Synchronous Parallel (BSP)
model, which features the sequential execution of multiple supersteps composed of:

a local computation phase,

a communication phase,

a barrier synchronization phase.

During each computation phase every IPU-Core� has access only to its dedicated
In-Processor-Memory�, which is 624kB of SRAM. The two together form a so called
IPU-Tile�.

SNNs on the Graphcore IPU�

IPU-Core� In-Processor-Memory�

Due to the recurrent structure of SNNs we can efficiently
distribute the neurons onto dedicated tiles for the whole training.
Data transfer between tiles is only necessary for the sparse input
spikes and output spike generation. This maximally utilizes the
fast access to locally stored parameters and minimizes data
transfer.

As every processor can execute truly independent programs
during the computation phases with complex control flow, we
believe the IPU is better suited than GPUs to handle sparsity
both in activation as well as in connectivity.

The IPU features very fast intra- and inter-IPU interconnect with
high bandwidth and low latency. This feature becomes especially
useful when designing large scale, distributed SNNs.

The IPU is programmable via the C++ based Poplar® SDK for
very fine grained control and via the Python API of all major
machine learning libraries (Pytorch, Tensorflow, ONNX, ...).

Sparse Spike representation:

In order to make use of the sparse activation of SNNs we use a sparse
spike representation that only stores the indices and the number of
neurons that spiked. A naive implementation would lead to inaccurate
gradients in the backward pass. To circumvent this issue we take a
very similar approach as in [6], by also propagation some information
for neurons that did not spike, but that were close to the threshold.

membrane potential: [0.8, 1.2, -0.5, 0.6, 0.95, 0.1, 0.98]

dense spike representation: [ 0, 1, 0, 0, 0, 0, 0]

sparse spike representation: ([ 1, 4, 6, nan], [1, 3])

Performance Benchmarking

In order to benchmark the SNN implementation for the IPU we evaluate the throughput of multiple SNN models using the SHD [2], N-MNIST [5] and DVSGesture [1] dataset and compare to an equivalent dense implementation on a GPU
(NVIDIA GeForce RTX 3090, NVIDIA V100, NVIDIA A100). We demonstrate behavior for fully-connected multi-layer SNN architectures.

As expected, we observed increasing throughput with increasing
sparsity. Currently, we can achieve at least 5-10x higher throughput for
realistic training scenarios with the IPU compared to a high-end GPUs.

Spiking Heidelberg Dataset, 100 timesteps, ADAM optimizer

When increasing the number of neurons per tile and therefore per IPU
we oberve and at least constant or even textbfincreasing acceleration factor.
This build a promising basis for future work on SNNs on increasing size.

SHD, 10 timesteps, SGD optimizer, hidden layer size ≈ 982

The SNN implementation on multiple IPUs in a model parallel fashion
demonstrates good scaling behavior, which gives the hope for large scale
distributed SNN training on large multi-IPU systems.
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Execution Traces
Using an analysis tool developed from Graphcore for the IPU, it is possible to get detailed information about the execution and memory
allocation of the executed programs. Here, you can see an example of the execution traces, meaning cycle by cycle information which
operations were performed. The left figure displays the execution trace for all operations performed during one timestep in
the forward pass, the right figure for the backward pass. Red color depicts a local computation phase, blue a communication and
exchange phase, and yellow a synchronization phase.
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