
Exploiting Sparsity for Accelerated
SNN Training on Graphcore IPUs

Jan Finkbeiner, Emre Neftci
jan.finkbeiner@fz-juelich.de, e.neftci@fz-juelich.de

SNNs and Deep Learning

Time discretized dynamics, of Leaky Integrate and Fire (LIF)
neurons for the membrane potential u:

ui [t] = α ui [t − 1](1− Souti [t − 1]) + (1− α)
1

C
Ii [t − 1]

Souti [t] = Θ(ui [t]− ϑi)
Ii [t] = f (Ii [t − 1], Sin[t], Sout[t − 1]) =

∑
wij S

in
j [t − 1]

The computational graph of a time discretized SNN is the one of
a recurrent neural network (RNN) as used in deep learning (DL)

LIF

Linear/Conv

LIF

Linear/Conv

LIF

Linear/Conv

time

t-1 t t+1

⇒ SNNs are RNNs with the Heaviside function Θ
as activation function

Minimization of objective function L by using some form of
stochastic gradient descent with respect to the parameters wij :

wij = wij − η
∂L

∂wij
= wij − η

∂L

∂Sn

∂Sn
∂uk

∂uk
∂wij

To alleviate the zero-gradient issue of the Heaviside function we
use the surrogate gradient method [4], where a smooth and
differentiable surrogate function is used for the gradient
computation in the backward pass:

Souti [t] = Θ(ui − ϑi) :=

{
1, ui − ϑi ≥ 0

0, ui − ϑi < 0

∂Si
∂ui

=
Θ(ui − ϑi)

∂ui
=

1

(β|ui − ϑi | + 1)2

There are many possible choices for the surrogate function [8].
Here we use the SuperSpike surrogate function [7].

In order to train the SNNs we use the standard backpropagation
through time (BPTT) algorithm.

The Graphcore IPU�

The Intelligence Processing Unit (IPU�) from the UK based company Graphcore is
designed to be a massively parallel compute architecture with distributed local memory
ideally suited for multiple data multiple instruction (MIMD) workloads. The latest
generation of the IPU, the BOW-2000 IPU Machine, can deliver up to 1.4 PFLOPS/s of
FP16 AI compute.

The IPU programming paradigm [3] is based on the Bulk Synchronous Parallel (BSP)
model, which features the sequential execution of multiple supersteps composed of:

a local computation phase,

a communication phase,

a barrier synchronization phase.

During each computation phase every IPU-Core� has access only to its dedicated
In-Processor-Memory�, which is 624kB of SRAM. The two together form a so called
IPU-Tile�.

SNNs on the Graphcore IPU�

IPU-Core� In-Processor-Memory�

Due to the recurrent structure of SNNs we can efficiently
distribute the neurons onto dedicated tiles for the whole training.
Data transfer between tiles is only necessary for the sparse input
spikes and output spike generation. This maximally utilizes the
fast access to locally stored parameters and minimizes data
transfer.

As every processor can execute truly independent programs
during the computation phases with complex control flow, we
believe the IPU is better suited than GPUs to handle sparsity
both in activation as well as in connectivity.

The IPU features very fast intra- and inter-IPU interconnect with
high bandwidth and low latency. This feature becomes especially
useful when designing large scale, distributed SNNs.

The IPU is programmable via the C++ based Poplar® SDK for
very fine grained control and via the Python API of all major
machine learning libraries (Pytorch, Tensorflow, ONNX, ...).

Sparse Spike representation:

In order to make use of the sparse activation of SNNs we use a sparse
spike representation that only stores the indices and the number of
neurons that spiked. A naive implementation would lead to inaccurate
gradients in the backward pass. To circumvent this issue we take a
very similar approach as in [6], by also propagation some information
for neurons that did not spike, but that were close to the threshold.

membrane potential: [0.8, 1.2, -0.5, 0.6, 0.95, 0.1, 0.98]

dense spike representation: [0, 1, 0, 0, 0, 0, 0]

sparse spike representation: ([1, 4, 6, nan], [1, 3])

Performance Benchmarking

In order to benchmark the SNN implementation for the IPU we evaluate the throughput of multiple SNN models using the SHD [2], N-MNIST [5] and DVSGesture [1] dataset and compare to an equivalent dense implementation on a GPU
(NVIDIA GeForce RTX 3090, NVIDIA V100, NVIDIA A100). We demonstrate behavior for fully-connected multi-layer SNN architectures.

As expected, we observed increasing throughput with increasing
sparsity. Currently, we can achieve at least 5-10x higher throughput for
realistic training scenarios with the IPU compared to a high-end GPUs.

Spiking Heidelberg Dataset, 100 timesteps, ADAM optimizer

When increasing the number of neurons per tile and therefore per IPU
we oberve and at least constant or even textbfincreasing acceleration factor.
This build a promising basis for future work on SNNs on increasing size.

SHD, 10 timesteps, SGD optimizer, hidden layer size ≈ 982

The SNN implementation on multiple IPUs in a model parallel fashion
demonstrates good scaling behavior, which gives the hope for large scale
distributed SNN training on large multi-IPU systems.

2 4 6 8 10 12 14 16
number of IPUs

1.0

1.2

1.4

1.6

1.8

2.0

ex
ec

ut
io

n
tim

e
[ti

m
e

fo
r 1

 IP
U] #neurons per tile = 2

#neurons per tile = 4
#neurons per tile = 8
#neurons per tile = 16

SHD, 10 timesteps, SGD optimizer, max activity = 5.0%

Execution Traces
Using an analysis tool developed from Graphcore for the IPU, it is possible to get detailed information about the execution and memory
allocation of the executed programs. Here, you can see an example of the execution traces, meaning cycle by cycle information which
operations were performed. The left figure displays the execution trace for all operations performed during one timestep in
the forward pass, the right figure for the backward pass. Red color depicts a local computation phase, blue a communication and
exchange phase, and yellow a synchronization phase.

References
Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition System”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

Benjamin Cramer et al. “The Heidelberg Spiking Data Sets for the Systematic Eval-
uation of Spiking Neural Networks”. In: IEEE Transactions on Neural Networks and
Learning Systems 33.7 (2022).

Zhe Jia et al. Dissecting the Graphcore IPU Architecture via Microbenchmarking. 2019.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks”. In: IEEE Signal Processing Magazine 36.6 (2019).

Garrick Orchard et al. Converting Static Image Datasets to Spiking Neuromorphic
Datasets Using Saccades. 2015.

Nicolas Perez-Nieves and Dan Goodman. “Sparse Spiking Gradient Descent”. In: Ad-
vances in Neural Information Processing Systems. Ed. by M. Ranzato et al. 2021.

Friedemann Zenke and Surya Ganguli. “SuperSpike: Supervised Learning in Multilayer
Spiking Neural Networks”. In: Neural Computation 30.6 (June 2018).

Friedemann Zenke and Tim P. Vogels. “The Remarkable Robustness of Surrogate
Gradient Learning for Instilling Complex Function in Spiking Neural Networks”. In:
Neural Computation 33.4 (Mar. 2021).

Member of the Helmholtz Association

	References

