001022275 001__ 1022275
001022275 005__ 20240709082055.0
001022275 037__ $$aFZJ-2024-01393
001022275 1001_ $$0P:(DE-Juel1)194204$$aYassin, Khaled$$b0$$eCorresponding author$$ufzj
001022275 1112_ $$aAachen Hydrogen Colloquium$$cAachen$$d2023-04-18 - 2023-04-19$$wGermany
001022275 245__ $$aNumerical Simulation of Hydrogen Spread in an Industrial Building Using containmentFoam
001022275 260__ $$c2023
001022275 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1706789838_4979
001022275 3367_ $$033$$2EndNote$$aConference Paper
001022275 3367_ $$2BibTeX$$aINPROCEEDINGS
001022275 3367_ $$2DRIVER$$aconferenceObject
001022275 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001022275 3367_ $$2ORCID$$aOTHER
001022275 520__ $$aAs the applications of Hydrogen as a replacement for fossil fuels and energy storage increases, more safety issues should be studied. Due to its small low value of the lower flammability limit (LFL), Hydrogen safety hazards due to leakage, especially in closed buildings, should be studied to avoid any damage that can result from the detonation of Hydrogen after mixing with air. The presented work is a part of the Living Lab Energy Campus (LLEC) project at Jülich Research Centre that aims to study Hydrogen leakage scenarios inside the central heating building in research centre's campus. The simulation of the spread of Hydrogen cloud is carried out using the open-source containmentFoam CFD package. The CAD model of the complete structure and equipment details of the central heating building at Jülich Research Centre’s campus was used to generate the computational grid required for the leakage simulation. Then, the leaked Hydrogen behavior inside the building is then simulated using state-of-the-art turbulence models taking into account the buoyancy of such a light gas. The study shows the locations, in which the Hydrogen cloud can accumulate and exceed the LFL value. This study also provides a recommendation of the proper ventilation method in case of accidental leakage to keep the Hydrogen concentrations within the safe limits.
001022275 536__ $$0G:(DE-HGF)POF4-1422$$a1422 - Beyond Design Basis Accidents and Emergency Management (POF4-142)$$cPOF4-142$$fPOF IV$$x0
001022275 7001_ $$0P:(DE-Juel1)130361$$aKelm, Stephan$$b1$$ufzj
001022275 7001_ $$0P:(DE-Juel1)130400$$aReinecke, Ernst-Arndt$$b2$$ufzj
001022275 909CO $$ooai:juser.fz-juelich.de:1022275$$pVDB
001022275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194204$$aForschungszentrum Jülich$$b0$$kFZJ
001022275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130361$$aForschungszentrum Jülich$$b1$$kFZJ
001022275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130400$$aForschungszentrum Jülich$$b2$$kFZJ
001022275 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1422$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
001022275 9141_ $$y2023
001022275 920__ $$lyes
001022275 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001022275 980__ $$aabstract
001022275 980__ $$aVDB
001022275 980__ $$aI:(DE-Juel1)IEK-14-20191129
001022275 980__ $$aUNRESTRICTED
001022275 981__ $$aI:(DE-Juel1)IET-4-20191129