001022333 001__ 1022333
001022333 005__ 20250203103351.0
001022333 037__ $$aFZJ-2024-01450
001022333 1001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b0$$eCorresponding author
001022333 1112_ $$aMLZ Conference 2023: Neutrons for Biomaterials$$cMünchen$$d2023-05-22 - 2023-05-25$$wGermany
001022333 245__ $$aProtein interactions with PEG
001022333 260__ $$c2023
001022333 3367_ $$033$$2EndNote$$aConference Paper
001022333 3367_ $$2DataCite$$aOther
001022333 3367_ $$2BibTeX$$aINPROCEEDINGS
001022333 3367_ $$2DRIVER$$aconferenceObject
001022333 3367_ $$2ORCID$$aLECTURE_SPEECH
001022333 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1710764958_7614$$xPlenary/Keynote
001022333 520__ $$aProtein-polymer interactions are a key point to understand and improve the activity of proteins and polymer in many bio related applications. Polyethylene glycol (PEG) is a widely used bio compatible polymer with applications reaching from antifouling, over crystallization helper to PEGylation of therapeutic drugs. Neutron scattering is an ideal method to examine protein PEG interactions because of the possibility to match PEG to D2O.I present here examples how protein-PEG systems can be examined by SANS/SAXS combined with neutron spinecho spectroscopy (NSE) to determine interactions between PEG and proteins on nanometer length scale and a timescale up to hundred nanoseconds.Matched hd-PEG can be used to examine the tracer diffusion of proteins in crowded environment. Matched maleimide-PEG allows to examine domain dynamics changes due to the bound maleimide-PEG. Combined SAXS/SANS analysis allows to examine hydration water and PEG protein interaction.
001022333 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001022333 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001022333 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001022333 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x3
001022333 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001022333 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001022333 8564_ $$uhttps://indico.frm2.tum.de/event/391/
001022333 909CO $$ooai:juser.fz-juelich.de:1022333$$pVDB
001022333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b0$$kFZJ
001022333 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001022333 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001022333 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001022333 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
001022333 9141_ $$y2024
001022333 920__ $$lyes
001022333 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001022333 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
001022333 980__ $$aconf
001022333 980__ $$aVDB
001022333 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001022333 980__ $$aI:(DE-Juel1)IBI-8-20200312
001022333 980__ $$aUNRESTRICTED
001022333 981__ $$aI:(DE-Juel1)JCNS-1-20110106