

Machine Learning Emulators

for First-Principles Simulations of Quantum Materials

Johannes Wasmer*[‡], Philipp Rüßmann^{†‡}, Ira Assent^{§¶}, Stefan Blügel*[‡]

- * Department of Physics, RWTH Aachen University, Germany
- † Institute of Theoretical Physics and Astrophysics, University of Würzburg, Germany
- [‡] PGI-1/IAS-1 Quantum Theory of Materials, Forschungszentrum Jülich and JARA, Germany
- § IAS-8 Data Analytics and Machine Learning, Forschungszentrum Jülich, Germany
- ¶ Department of Computer Science, Aarhus University, Denmark

j.wasmer@fz-juelich.de

EMULATORS — A NEW PARADIGM OF SCIENTIFIC DISCOVERY¹

PROJECT GOALS

- Extension of state-of-the-art atomistic machine learning approaches to magnetic materials for energy-efficient future computing devices
- Integration of first-principles simulation and ML emulation into a single software package
- Self-improving feedback loop via high-throughput data generation
- Harnessing the full data provenance for ML via FAIR scientific workflows²

EMULATORS FOR QUANTUM MATERIALS

- Surrogate ML models have improved molecular dynamics simulations by orders of magnitude³.
- We extend this success to electronic structure simulations.
- Feeding back better initial guesses into the simulation to improve convergence
- 2 Direct property prediction for multiscale simulations.⁴

PROJECT COMPONENTS

DATA GENERATION

Training datasets of 10'000 impurity calculations.

- Integrate high-throughput data generation
- First-principles calcuation with the juDFT code JuKKR
- Embedding of magnetic impurities in a topological insulator
- Candidate materials for future quantum technologies like quantum computers

MODEL PERFORMANCE

Prediction of magnetic interaction strength J_{ij} of 2000 dimer impurities embedded into the topological insulator Bi_2Te_3 (secondary emulator). Model: SOAP + Kernel regression. MAE = 0.08 meV, R^2 = 0.94.

MODEL CREATION

- Data efficiency with Euclidean symmetryaware models
- Evaluation of state-of-the-art models
- Extension to quantum materials systems

SCIENTIFIC WORKFLOWS

Subgraph of a single calculation.

- Full data provenance tracked with workflow engine AiiDA
- Intermediate calculation stages reused for learning

AI CLOUD INFRASTRUCTURE

- Deployment of full-stack (atomistic) machine learning platform
- iffAiiDA.fz-juelich.de available to all Jülich researchers

REFERENCES

- 1. C. M. Bishop, M. Welling, A. LLorens. *Plenary: The Fifth Paradigm of Scientific Discovery.* Microsoft Research Summit 2022.
- 2. M. Uhrin, et int., G. Pizzi. Workflows in AiiDA: Engineering a High-Throughput, Event-Based Engine for Robust and Mod-
- ular Computational Workflows. *Computational Materials Science* **187**, 110086 (Feb. 1, 2021).
- 3. W. Jia, et int., L. Zhang. Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning. in SC20: International Conference for High Perfor-
- mance Computing, Networking, Storage and Analysis (Nov. 2020), 1–14.
- 4. P. Rüßmann, et int., S. Blügel. The AiiDA-Spirit Plugin for Automated Spin-Dynamics Simulations and Multi-Scale Modeling Based on First-Principles Calculations. *Frontiers in Materials* 9 (2022).