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We present an analysis of high-resolution quasi-elastic neutron scattering spectra of phosphoglyc-
erate kinase which elucidates the influence of the enzymatic activity on the dynamics of the protein.
We show that in the active state the inter-domain motions are amplified and the intra-domain
asymptotic power-law relaxation ∝ t−α is accelerated, with a reduced coefficient α. Employing an
energy landscape picture of protein dynamics, this observation can be translated into a widening of
the distribution of energy barriers separating conformational substates of the protein.

Understanding the functional dynamics of enzymes
is a fundamental issue in molecular biophysics, bi-
ology, and biochemistry. Phosphoglycerate kinase
(PGK) is one example for which the dynamics-
function relationship has been intensively studied
with various methods, including structural NMR, X-
ray crystallography, quasielastic neutron scattering
(QENS), neutron spin echo (NSE) spectroscopy, and
Molecular Dynamics (MD) simulation [1–10]. PGK
is a monomeric enzyme which is fundamental for the
metabolism of all living organisms. By converting
1,3-bisphosphoglycerate to 3-phosphoglycerate it cat-
alyzes one of the two ATP-producing reactions of the
glycolytic pathway and it participates also in gluco-
neogenesis by catalyzing the opposite reaction to pro-
duce 1,3- bisphosphoglycerate and ADP [11],

1,3-bisphosphoglycerate + ADP ⇌

glycerate 3-phosphate + ATP. (1)

Yeast PGK has a weight of about 45 kDa and is com-
posed of two domains which are connected by a well
conserved hinge region where the catalytic reactions
take place. Several of the studies cited above have
been performed with the particular goal to better un-
derstand the role of the inter-domain motions for the
function of the enzyme [4, 6, 7, 9]. A powerful space
and time-resolved method for this purpose is neutron
spin echo (NSE) spectroscopy, which has been used
in Ref. [7] in combination with small-angle neutron
scattering (SANS) and normal mode analysis and in
Ref.[9] in combination with MD simulation. Standard
NSE probes the slow motions and global diffusion of
proteins on a 0.1-100 ns time scale and on a nm length
scale. The results of the NSE studies suggest that the
hinge-bending motions of the two domains in PGK
enable its enzymatic activity and that the presence of
the substrates rigidifies the molecular and accelerates
its internal dynamics.
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The present article aims at extending and consol-
idating the abovementioned work with an analysis
of QENS data from the high-resolution spectrome-
ter IN16B at the Institut Laue-Langevin in Grenoble.
The instrument probes the ns time scale if operated in
BATS mode (backscattering and time of flight spec-
troscopy) [12] and closes the gap between QENS ex-
periments with standard time-of-flight spectrometers
and NSE spectroscopy.

The QENS experiments on PGK were performed
at 283 K in presence and absence of the substrates
(13mM MgATP, 41mM 3PG, 20 mM MOPS, 50 mM
NaCl, 2 mM EDTA, pD 7.4, 99.9% atom D deuteri-
umoxide) using a PGK concentration of 50 mg/ml.
PGK from yeast and all chemicals were obtained com-
mercially from Sigma-Aldrich. These conditions are
the same as in Ref. [7] and warrant that PGK in pres-
ence of substrates is more than 90% in the ligand-
bound state. Prior to data analysis, the solvent-
contributions were subtracted. Since about 50 % of
the atoms in a protein are hydrogen atoms, which
have a strongly dominant cross section for incoher-
ent neutron scattering, the dynamic structure factor
for QENS from PGK can be written in the form

S(q, ω) = 1
2π

∫ +∞

−∞
dte−iωtF (q, t), (2)

F (q, t) ≈ 1
N

∑
j∈H

〈
e−iq·x̂j(0)eiq·x̂j(t)

〉
. (3)

Here x̂j(t) is the time-dependent position operator of
hydrogen atom j and the symbol ⟨. . .⟩ denotes a quan-
tum ensemble average, which leads to the the sym-
metry relations F ∗(q, t) = F (−q, −t) and F (q, t) =
F (−q, −t + iβℏ).

As in several previous studies [13–16], the anal-
ysis of the QENS data has been performed in the
time domain, employing a model for the symmetrized
and resolution-deconvolved intermediate scattering
function

F (+)(q, t) = F (q, t + iβℏ/2)
F (q, iβℏ/2) . (4)

Within Schofield’s semiclassical approximation [17]
F (+)(q, t) can be identified with the classical
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FIG. 1: The PGK molecule (PDB code 3PGK) together
with a sphere of radius RH = 30.5 Å which is used for the
Stokes-Einstein relation (17) and the definitions of Ra and
ra. The red arrow points to the center-of-mass.

time correlation function, Fcl(q, t) ≡ limℏ→0 F (q, t),
and the normalization factor in (4) ensures that
F (+)(q, 0) = 1. For all the technical details of the data
analysis, we refer to a recent QENS study of myelin
basic protein on the same instrument [13].

For model building purposes, we assume that there
is a representative hydrogen atom “a” whose dynam-
ics accounts for both the relaxation dynamics of the
individual hydrogen atoms and their motional hetero-
geneity. Within Schofield’s semiclassical approxima-
tion we have then

F (+)(q, t) ≈
〈

e−iq·x̂a(0)eiq·x̂a(t)
〉

cl
, (5)

where ⟨. . .⟩cl stands for a classical ensemble average.
We assume furthermore that the domains in PGK
can be treated as equivalent and that the motions
of the scattering atom are uncorrelated with the mo-
tions of the domain to which it is attached. Writing
xa = Ra + ra, where Ra points to the center of the
domain and ra to the position of the scattering atom
with respect to that reference point (see Fig. 1), the
orientation-averaged intermediate scattering function
of PGK in solution can then be factorized as

F
(+)(q, t) ≈ f(q, t)g(q, t) (q ≡ |q|), (6)

where

f(q, t) ≡ ⟨a∗
qaq(t)⟩cl and g(q, t) ≡ ⟨A∗

qAq(t)⟩cl (7)

are the orientation-averaged autocorrelation functions
related to the respective dynamical variables

aq ≡ eiq·ra and Aq ≡ eiq·Ra . (8)

Introducing the generic variable (the q-dependence is
omitted)

ξ =
{

aq − ⟨aq⟩ for intra-domain motions,
Aq − ⟨Aq⟩ for inter-domain motions,

(9)

the time evolution of both f(q, t) and g(q, t) can be de-
scribed by the same dynamical model, requiring that
nor ⟨aq⟩ neither ⟨Aq⟩ vanish identically. In this case,
the real and imaginary parts of ξ can be considered as
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FIG. 2: Left panel: “Rough” parabolic potential. Right
panel: Resolution-deconvolved F (q, t) of PGK in deuter-
ated solution without and in presence of substrates (blue
and yellow dots, respectively) and the corresponding fits
(blue and yellow line, respectively).

independent dynamical variables and stochastic mod-
els can be used for the time evolution of the real two-
component vector

ξ ≡
(

ℜ{ξ}
ℑ{ξ}

)
.

We chose here the fractional Ornstein-Uhlenbeck
process [18, 19], which describes anomalous, non-
markovian diffusion in a harmonic bias potential,

V (ξ) = Kξ

2 |ξ|2 (Kξ > 0),

which tends to restore the equilibrium configurations
corresponding to ⟨ξ⟩ = 0. The force constant, Kξ,
has here the dimension of an energy and the fractional
Fokker-Planck equation

∂tP = 0∂1−α
t

{
η

(α)
ξ

∂

∂ξ
· {ξP} + D

(α)
ξ

∂

∂ξ
· ∂P

∂ξ

}
describes the time evolution of the conditional prob-
ability P (ξ, t|ξ0, 0) for a transition ξ0 → ξ within
time t. Here η

(α)
ξ denotes a fractional relaxation con-

stant, with physical dimension 1/sα, and

D
(α)
ξ = η

(α)
ξ kBT/Kξ = η

(α)
ξ ⟨|ξ|2⟩cl

is a fractional diffusion coefficient. For 0 < α < 1 the
fractional Riemann-Liouville derivative

0∂1−α
t f(t) ≡ d

dt

∫ t

0
dt′ (t − t′)α−1

Γ(α) f(t′)

represents long-time memory effects and the normal-
ized autocorrelation function (ACF) of ξ has the form
of a stretched Mittag-Leffler (ML) function [20],

ϕ(t) ≡ ⟨ξ(0) · ξ(t)⟩/⟨|ξ|2⟩ = Eα

(
−η

(α)
ξ |t|α

)
, (10)

which decays monotonously for 0 < α ≤ 1 and dis-
plays a power law decay for large times,

Eα

(
−η

(α)
ξ |t|α

)
t→∞∼

η
(α)
ξ t−α

Γ(1 − α) . (11)

For α = 1 the long-time tail disappears and ϕ(t) be-
comes an exponentially decaying function,

Eα

(
−η

(α)
ξ |t|α

)
α→1= exp (−ηξ|t|) , (12)
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FIG. 3: The model parameters τ and α for PGK. Trian-
gles indicate four-parameter fits (no error bars given) and
squares three-parameter fits (with error bars). More ex-
planations are given in the text.

where ηξ has the dimension 1/s. The fOU process can
be visualized as a diffusion process in the “rough” two-
dimensional harmonic potential [21] which is depicted
in the left panel of Fig. 2 and which is characterized by
a wide distribution of energy barriers separating var-
ious minima or “conformational substates” [22]. We
note here that the parameter α determines entirely the
form of the distribution for the dimensionless barrier,
ϵ = ∆E/kBT , which reads [13]

PML(ϵ) = 2ϵ sin(πα)
π (e−αϵ2 + eαϵ2 + 2 cos(πα))

. (13)

For α → 1 the barrier distribution is entirely concen-
trated on ϵ = 0 and the “rough” harmonic potential
becomes thus smooth. The corresponding diffusion
process is the normal Ornstein-Uhlenbeck process [23],
which leads to the exponentially decaying autocorre-
lation function (12). In the opposite case, α → 0, the
distribution of energy barriers is flat, including also
infinitely high barriers, and ϕ(q, t) exhibits a strongly
non-exponential relaxation.

With these preliminaries and the definition
EISF (q) ≡ |⟨aq⟩cl|2 we arrive at the model [24]

f(q, t) ≡ EISF (q)
+ (1 − EISF (q)Eα (−(|t|/τ)α) . (14)

for f(q, t), where EISF (q), τ ≡ τ(q), and α ≡ α(q)
are the q-dependent fit parameters. Concerning the
function g(q, t), we assume that the time evolution of
Aq−⟨Aq⟩ is described by a normal OU process (α = 1)
and that |⟨Aq⟩cl|2 ≈ 0 in the fits. This leads to

g(q, t) ≈ exp
(
−D(q)q2|t|

)
, (15)

where the fit parameter, D(q), has the dimension of a
diffusion coefficient (m2/s). For small q-values it fol-
lows from the cumulant expansion of the intermediate
scattering function that

g(q, t) q→0= e− q2
6 ⟨(Ra(t)−Ra(0))2⟩ t→∞∼ e−D0q2t, (16)

where D0 is the diffusion coefficient for a whole do-
main and thus for the whole PGK molecule.

We start the discussion of the results with the
right panel of Fig. 2, which shows a fit of the
resolution-deconvoloved intermediate scattering func-
tion, F

(+)(q, t) ≈ f(q, t)g(q, t), with four parameters,
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FIG. 4: The EISF parameter for PGK in absence and
presence of substrates

τ(q), α(q), EISF (q), and D(q) for the minimum and
maximum q-values in absence and presence of sub-
strates. Fig. 3 displays the parameters τ (left panel)
and α (right panel) as a function of q in presence and
absence of the substrates (blue and yellow triangles,
respectively) A clear impact of the presence of sub-
strates on the intra-domain dynamics can be seen:
Both τ and α are systematically reduced in presence
of the substrates, which indicates that the internal
molecular dynamics is accelerated by the enzymatic
activity of the molecule and that the relaxation dy-
namics of the domains becomes less exponential. We
note that τ and α in presence and absence of the
substrates follow globally the same evolution with q.
The time scale parameter τ becomes generally smaller
with increasing q, which simply indicates that local-
ized motions are faster than collective motions imply-
ing a large number of atoms. The form parameter, α,
increases instead with q to values close to 1, indicating
increasingly exponential relaxation for more localized
motions. We attribute this behavior to the fact that
less relaxation modes contribute to localized motions
than to large amplitude motions which are probed at
small values of q.

Fig. 4 presents the fitted EISFs together with the
measured counterparts which are obtained by inte-
grating the measured QENS intensity over the width
of the resolution function. The details of the exact
definition can be found in Ref. [16]. We find that
the fitted EISF is globally close to zero in the pres-
ence and absence of the ligand, except at q = 1.3 Å−1

where the EISF of PGK in absence of substrates lig-
and is slightly larger than the EISF in their presence.
Correlating this observation with the decrease of α in
presence of the substrates shows that the domains are
slightly stiffened, which confirms again the findings in
Ref [7] which were obtained by NSE spectroscopy. The
dramatic difference between measured and fitted elas-
tic intensities has been observed previously and can
be attributed to spurious contributions of quasielastic
scattering to the instrument-broadened elastic inten-
sity [15]. For comparison we show also fits with a re-
duced model where D(q) ≡ 0 (blue and yellow squares,
respectively). It can be clearly seen that the results
are very similar, the difference being the error bars,
which are much larger for the fit of all four parame-
ters and which are not shown here. This observation
is in line with the findings in Ref. [15] for the intrinsi-
cally disordered Myelin Basic Protein (MBP) and we
present the three-parameter fits to show that the fits
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FIG. 5: Left panel: Energy barrier spectrum in absence
(blue) and presence (red) of substrates. Right panel:
The fitted diffusion coefficient D(q).

of τ, α and EISF are stable.
The impact of the enzymatic dynamics on the intra-

domain energy landscape can be visualized by com-
paring the energy barrier profiles, PML(ϵ), describing
its “roughness” [13–15], which are displayed in the left
panel of Fig. 5. Important differences between the two
profiles are again observed for q-values corresponding
to opening amplitudes of the hinge region and indicate
a wider distribution of energy barriers in presence of
the substrates. This corresponds to the decrease of the
alpha parameter described above, indicating a stiffen-
ing of PGK in its active mode.

The q-dependent diffusion coefficient is displayed in
the right panel of Fig. 5. One observes that D(q)
displays a pronounced modulation with respect to its
values at small and large q-values. The latter are close
to the estimation for the diffusion coefficient of a whole
PGK molecule obtained from the Stokes-Einstein law,

D0 = kBT

6πηRH
≈ 5.1 × 10−3Å2

/ps. (17)

For this estimation we used an effective hydrodynamic
radius of RH = 30.5 Å calculated from the PDB
structure 3PGK, including the diameter of a water
molecule (see Fig.1). The maximum of D(q) at about
qmax = 1.2/Å corresponds to 2π/qmax = 5.2 Å in real
space, which can be associated with breathing motions
of the hinge-region in PGK caused by its enzymatic
activity and which have also be observed by combin-
ing NSE spectroscopy and normal mode analysis [7].
The fact that D(q) ≈ D0 for smaller q-values is in line
with the requirement that g(q, t) must here describe
diffusion of whole PGK molecules and D(q) ≈ D0 at
higher q-values reflects that more localized motions do
not affect the global diffusive dynamics of PGK.

To resume, we can say that our QENS study gives a
consistent picture of the functional dynamics of PGK
which confirms and completes an earlier study by NSE
spectroscopy. It demonstrates in particular that the
strongly non-exponential relaxation dynamics in pro-
teins must be accounted for in the models used for
the analysis of experimental data to fully exploit their
rich information content.
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