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Elastic neutron scattering from proteins reflects the motional amplitudes resulting from their in-
ternal collective and single-atom dynamics and is observable if the global diffusion of whole molecules
is either blocked or cannot be resolved by the spectrometer under consideration. Due to finite instru-
mental resolution the measured elastic scattering amplitude always contains contaminations from
quasielastic neutron scattering and some model must be assumed to extract the resolution-corrected
counterpart from corresponding experimental spectra. Here we derive a quasi-analytical method for
that purpose, assuming hat the intermediate scattering function relaxes with a “stretched” Mittag-
Leffler function, Eα(−(t/τ)α) (0 < α < 1), towards the elastic amplitude and that the instrumental
resolution function has Gaussian form. The corresponding function can be integrated into into a
fitting procedure and allows for eliminating the elastic intensity as a fit parameter. We illustrate
the method for the analysis of two proteins in solution, the intrinsically disordered Myelin Basic
Protein, confirming recently published results [J. Chem. Phys. 156(2):025102 (2022)], and the well-
folded globular protein myoglobin. We also briefly discuss the consequences of our findings for the
extraction of mean square position fluctuations from elastic scans.

I. INTRODUCTION

Thermal neutron scattering is a powerful and versatile
spectroscopic method to probe the structural dynamics
of condensed matter systems.1 An important application
concerns quasielastic neutron scattering (QENS) from
proteins, which gives information about the diffusion and
the relaxation dynamics of these macromolecules.2–6 To
probe the internal non-exponential multiscale relaxation
dynamics, which is crucial for their function and typical
for complex systems in general,7–10 one can either use
hydrated powder samples, where global diffusional mo-
tions are simply blocked, or probe a protein solution with
a spectrometer that will not resolve these motions. In
both cases, information about the motional amplitudes
of internal protein dynamics is contained in the elastic
amplitude and elastic scans are thus in principle suffi-
cient to obtain this information. One must, however, be
aware that the extracted motional amplitudes are under-
estimated due to the unavoidable contamination of the
elastic amplitude by contributions from quasielastic scat-
tering, and this correction can be particularly important
for slowly relaxing systems.11 Noting that the “true” elas-
tic amplitude defines the asymptotic form of the neutron
intermediate scattering function at infinite time, it can
only be obtained by assuming some model for that func-
tion. A corresponding “minimalistic” model has been re-
cently proposed and motivated in Ref. [12] and was then
applied in a few subsequent QENS studies of protein dy-
namics,13–15 as well as for confined water molecules in
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clays.16 In all these studies the elastic amplitude was a
fit parameter, which left some ambiguity about the phys-
ical significance of the resulting fits, in particular since
the fit parameters are quite interdependent. The goal of
this paper is to replace the elastic intensity as a fit param-
eter by an estimation on the basis of its experimentally
measured counter part, the assumed model for the re-
laxation function, and the resolution of the instrument
under consideration. Computational efficiency is here a
fundamental aspect since it enables the integration of the
corresponding function into the fitting procedure for the
remaining parameters of the relaxation function.

The paper is organized as follows: The core of the
paper is contained in the following Section II, which de-
scribes the theoretical background and the method, fol-
lowed by Section IV showing some applications, and the
Conclusions in Section V.

II. THEORETICAL BACKGROUND

A. Scattering functions

In standard neutron scattering experiments one mea-
sures the dynamic structure factor,

F̃ (q, ω) = 1
2π

∫ +∞

−∞
dt e−iωtF (q, t), (1)

which is the time Fourier transform of the intermediate
scattering function containing the information about the
structural dynamics of the system under consideration,

F (q, t) = 1
N

∑
j,k

Γjk
〈
e−iq·R̂j(0)eiq·R̂k(t)

〉
. (2)
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Usually the dynamic structure factor is denoted by
S(q, ω), but we use the symbol F̃ (q, ω) to label Fourier
transforms in a uniform way. The scattering-related
quantities are, respectively, the momentum and energy
transfer from the neutron to the sample, q and ω, in units
of ~, N is the total number of atoms in the scattering
system and for each pair {j, k} of them, {R̂j(t), R̂k(t)}
denote the associated time-dependent position operators.
The symbol 〈. . .〉 stands for a quantum ensemble average
and the weighting factors Γjk have the form

Γjk = bj
∗
bk + δjk|bj − bj |2, (3)

where bj and bk are the (complex) scattering lengths1,17
of the atoms j and k, respectively. For a given atom the
average runs over all isotopes and combinations of the nu-
clear and neutron spins and we note that bj,coh ≡ bj and
bj,inc ≡ (|bj − bj |2)1/2 are, respectively, the coherent and
incoherent scattering lengths of atom j. Coherent and in-
coherent scattering probe, respectively, the collective and
average single atom dynamics of the system under con-
sideration, but since these scattering types are not sepa-
rable without special spin-polarization experiments,18–20
we will not explicitly distinguish between them.

The intermediate scattering function fulfills the sym-
metry relations of a quantum time correlation function,

F ∗(q, t) = F (q,−t), (4)
F (q,−t) = F (−q, t+ iβ~), (5)

where β = 1/kBT is the inverse Boltzmann temperature.
For the dynamic structure factor Eq. (5) translates into

F̃ (q, ω) = eβ~ωF̃ (−q,−ω), (6)

which is the well-known detailed-balance relation.

B. Elastic and inelastic scattering

Noting that

eiq·R̂j(t) =
∫
d3r exp(−iq · r)δ(r− R̂j(t))

is the spatially Fourier-transformed single particle den-
sity for atom j, we introduce the deviation of this quan-
tity with respect to its mean value,

δα̃k(q, t) = eiq·R̂j(t) −
〈
eiq·R̂j(t)

〉
, (7)

to split the intermediate scattering function into a static
and a time-dependent component,

F (q, t) = F (q,∞) + δF (q, t), (8)

which are given by

F (q,∞) = 1
N

∑
j,k

Γjk
〈
eiq·R̂j

〉∗ 〈
eiq·R̂k

〉
, (9)

δF (q, t) = 1
N

∑
j,k

Γjk
〈
δα̃†j(q, 0)δα̃k(q, t)

〉
. (10)

Making the the physically reasonable assumption

lim
t→∞

δF (q, t) = 0, (11)

shows that F (q,∞) is the asymptotic form of the in-
termediate scattering function and it follows by Fourier
transform of Eq. (8) that

F̃ (q, ω) = F (q,∞)δ(ω) + δF̃ (q, ω). (12)

Therefore F (q,∞) represents the elastic amplitude of the
Fourier spectrum and δF̃ (q, ω) its inelastic component.
Here “inelastic” is to be understood as “non-elastic” and
includes also the quasielastic component of the spectrum,
which is very close to the elastic line and describes relax-
ation and diffusion processes.

C. Generic form of the scattering functions

For modeling purposes it is convenient to introduce the
normalized relaxation function

φ(q, t) = δF (q, t)/δF (q, 0), (13)

noting that this function does not monotonously decay
for short times. This leads to the generic form

F (q, t) = F (q,∞) + (F (q, 0)− F (q,∞))φ(q, t) (14)

of the intermediate scattering function which translates
into the corresponding generic form

F̃ (q, ω) = F (q,∞)δ(ω)
+ (F (q, 0)− F (q,∞))φ̃(q, ω) (15)

of the dynamic structure factor. We note that

F (q, 0) = 1
N

∑
j,k

Γjk
〈
eiq·(R̂k−R̂j)

〉
(16)

is the total static structure factor, which tends for q ≡
|q| → ∞ to a constant value,

lim
q→∞

F (q, 0) = 1
N

∑
k

Γkk, (17)

and oscillates for smaller q-values around that constant.
For modeling purposes it is convenient to normalize the
intermediate scattering function such that

1
N

∑
k

Γkk = 1. (18)

D. Hydrogen-rich systems

We finally consider the frequent of case of neutron scat-
tering from hydrogen-rich systems, such as proteins and
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polymers. Because of the exceptionally large cross sec-
tion for incoherent scattering from hydrogen, it is suf-
ficient to consider only these atoms, setting Γjk = δjk.
With the normalization (18) it then follows that

F (q, 0) = 1 (19)

and the generic form of the intermediate scattering func-
tion simplifies to

F (q, t) = EISF (q) + (1− EISF (q))φ(q, t), (20)

where

EISF (q) = 1
N

∑
j∈H

∣∣∣〈eiq·R̂j

〉∣∣∣2 (21)

is referred to as Elastic Incoherent Structure Factor and
the relaxation function has the form

φ(q, t) =

∑
j∈H

〈
δα̃†j(q, 0)δα̃j(q, t)

〉
∑
j∈H

〈
δα̃†j(q, 0)δα̃j(q, 0)

〉 . (22)

III. PSEUDOELASTIC SCATTERING

A. Measured and true elastic intensity

We will now consider a measured dynamic structure
factor, which is always broadened due to finite instru-
mental resolution. Defining R̃(ω) to be the instrumen-
tal resolution function and omitting for simplicity the
q-dependence of the relevant quantities, the measured
dynamic structure factor is given by the frequency con-
volution of the true dynamic structure factor and the
resolution function,

F̃m(ω) = (R̃ ∗ F̃ )(ω) ≡
∫ +∞

−∞
dω′ R̃(ω − ω′)F̃ (ω′). (23)

With (15) we obtain then in a first step

F̃m(ω) = F (∞)R̃(ω) + (F (0)− F (∞))(R̃ ∗ φ̃)(ω). (24)

We define now the measured elastic intensity through the
integral

Fm(∞) ≡
∫ +ε

−ε
dω F̃m(ω), (25)

where ε > 0 is defined such that∫ +ε

−ε
dω R̃(ω) / 1, (26)

and the measured total static structure factor through

Fm(0) ≡
∫ ωmax

ωmin

dω F̃m(ω), (27)

where [ωmin, ωmax] is the dynamical range of the instru-
ment. It follows then from the generic form (24) of the
measured, resolution-broadened dynamic structure fac-
tor that

Fm(∞) ≈ F (∞) + (Fm(0)− F (∞))ξ, (28)

where ξ is the pseudoelastic contribution due to finite
instrumental resolution,

ξ =
∫ +ε

−ε
dω (R̃ ∗ φ̃)(ω). (29)

Supposing that this contribution can be reliably com-
puted on the basis of appropriate models for the relax-
ation function and the instrumental resolution, the “true”
elastic intensity may be estimated through

F (∞) ≈ Fm(∞)− ξFm(0)
1− ξ . (30)

For essentially incoherent scattering the measured to-
tal structure factor is not needed, since one knows that
the incoherent static structure factor is simply a con-
stant. Assuming the normalization (18), one can replace
Fm(0) → 1 in this case. It is also worthwhile noting
that the standard definition of the elastic amplitude21,22
corresponds in our notation to the measured one.

B. Model

1. Symmetrized correlation function

The symmetry relations (4) and (5) show that the in-
termediate scattering function becomes a real symmet-
rical function in time if one considers the classical limit
~ → 0 and if one can assume that the scattering func-
tions are invariant with respect to the parity operation
q → −q. Based on this observation, Schofield proposed
to use the time-symmetrized real function F (+)(q, t) ≡
F (q, t − iβ~/2) to define the semiclassical approxima-
tion F (+)(q, t) ≈ F (cl)(q, t).23 To be able to work with
classical relaxation models, we consider now the time-
symmetrized generic form

F (+)(t) = F (∞) + (F (0)− F (∞))φ(+)(t) (31)

of the intermediate scattering function, where the relax-
ation function is defined as

φ(+)(t) ≡ φ(t+ iβ~/2)
φ(iβ~/2) , (32)

in order to ensure its correct normalization.

2. “Minimalistic” model

We assume now that the symmetrized relaxation func-
tion is well represented by the model

φ(+)(t) = φML(t) (33)
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where φML(.) is the “stretched” Mittag-Leffler (ML) func-
tion,

φML(t) ≡ Eα(−(|t|/τ)α) (0 < α ≤ 1). (34)

The Mittag-Leffler function, Eα(z), is an entire function
in the complex plane,24 and the Taylor series Eα(z) =∑∞
n=0

zn

Γ(1+αn) shows that E1(z) = exp(z). The most
important property of the model relaxation function (34)
is that it decays asymptotically with a power law,

φML(t) t→∞∼ (t/τ)−α

Γ(1− α) . (35)

Inserting (34) into the generic form (31) of the sym-
metrized intermediate scattering leads to the model

F (+)(t) = F (∞) + (F (0)− F (∞))Eα(−(|t|/τ)α) (36)

which has a priori three parameters:

1. the time scale parameter, τ ,

2. the form parameter, α,

3. the plateau value F (∞) ≡ limt→∞ F (+)(t).

In this form the model has been used in recent
publications,13–15 noting that only incoherent scattering
has been considered, where F (0) = 1. In the following
this restriction will not be made, assuming that an esti-
mation for F (0) ≡ F (q, 0) can be provided according to
Eq. (27).

The dynamic structure factor corresponding to the
model (36) has then the form

S(+)(ω) = F (∞)δ(ω) + (F (0)− F (∞))φ̃ML(ω) (37)

where the Fourier transformed relaxation function is a
“generalized Lorentzian”,25

φ̃ML(ω) =
sin
(
πα
2
)

πω
(
(τω)−α + (τω)α + 2 cos

(
πα
2
)) , (38)

which follows from the even simpler analytical form of its
Laplace transform,24

φ̂ML(s) = 1
s(1 + (sτ)−α) , (39)

by using the identity φ̃ML(ω) = <{φ̂ML(iω)}. The
Fourier spectrum (38) becomes a “normal” Lorentzian
function for α→ 1.

3. Pseudoelastic model contribution

The estimation of the plateau value of a function from
experimental data with an instrument-limited finite time
range is clearly a delicate task and it is desirable to be
to have some consistency check in which experimental

data are used. This can be achieved if the pseudoelastic
contribution, ξ, can be efficiently corrected for the given
model relaxation function, such that the estimation (30)
can be integrated into the fitting procedure. For this
purpose we will assume that the resolution function is
well represented by a Gaussian function,

R̃(ω) = 1√
2πσ

e−
ω2

2σ2 ←→ R(t) = e−
σ2t2

2 , (40)

where σ is approximatively the half width at half maxi-
mum (HWHM) of the instrument under consideration.
Working with symmetrized neutron scattering spectra
and the model relaxation function φML(t), the resulting
pseudoelastic contribution becomes then a function of the
parameters α, τ , and σ,

ξML(τ, α, σ) =
∫ +ε

−ε
dω (R̃ ∗ φ̃ML)(ω), (41)

such that

F (∞; τ, α, σ) ≈ Fm(∞)− ξML(τ, α, σ)Fm(0)
1− ξML(τ, α, σ) , (42)

replaces the fit parameter F (∞). For a Gaussian function
we have

∫ +3σ
−3σ dω R̃(ω) ≈ 0.9978, such that ε = 3σ is a

good choice.

C. Computing ξML

In order to obtain a quasi-analytical formula for the
pseudoelastic contribution ξML defined in Eq. (41) we
introduce the boxcar function

W̃ (ω) = Θ
(

1− |ω|
ε

)
←→W (t) = 2 sin(εt)

t
, (43)

where ε > 0 is the cutoff frequency. With Parseval’s the-
orem and the convolution theorem of the Fourier trans-
form,

(R̃ ∗ φ̃ML)(ω)←→ R(t)φML(t), (44)

we write in a first step

ξML =
∫ +∞

−∞
dω W̃ (ω)(R̃ ∗ φ̃ML)(ω)

= 1
2π

∫ +∞

−∞
dtW (t)R(t)φML(t).

Defining the auxiliary function

H(t) ≡W (t)R(t)φML(t), (45)

and noting that all functions on the r.h.s. are even in
time, it follows that

ξML = 1
π

∫ ∞
0

dt e−stH(t)
∣∣∣∣
s=0

. (46)
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The pseudoelastic contribution ξML may thus be writ-
ten as Laplace transform of a product of three functions,
evaluated at s = 0. We use now that for a pair of func-
tions, f(t) et g(t),∫ ∞

0
dt e−stf(t)g(t) = 1

2πi

∮
C

ds′ f̂(s− s′)ĝ(s′), (47)

where C encircles all singularities of the integrand, and
use this formula in two steps:

1. Compute

φ̂
(R)
ML(s) = 1

2πi

∮
C

ds′ φ̂ML(s− s′)R̂(s′), (48)

2. Compute

ξML = 1
π

{
1

2πi

∮
C

ds′ φ̂
(R)
ML(−s′)Ŵ (s′)

}
. (49)

Here an analytical form is known for the Laplace trans-
formed model relaxation function, φ̂ML(s), (see Eq. (39)),
for the Laplace transform of the model resolution time
window,

R̂(s) = 1
σ

√
π

2 e
s2

2σ2 erfc
(

s√
2σ

)
, (50)

and for the Laplace transform of W (t),

Ŵ (s) = 2arccot
(s
ε

)
. (51)

An analytical form of the contour integrals (48) and 49)
cannot be found, but a good quasi-analytical approxi-
mation can be obtained by replacing R̂(s) and Ŵ (s) by
Padé approximants,26

R̂(s) ≈ 1
σ

P (s/σ)
Q(s/σ) , (52)

Ŵ (s) ≈ P ′(s/ε)
Q′(s/ε) , (53)

where P (.), Q(.), P ′(.), Q′(.) are polynomials. We note
here that the method has been recently used to com-
pute a good approximation for the resolution-broadened
Fourier transform φ̃

(R)
ML(ω).14 Introducing appropriately

scaled integration variables, the contour integrals (48)
and 49) may then be evaluated by the residue theorem
of complex analysis. The details are described in Ap-
pendix A and the result is

ξML ≈
1
π

m∑
j=1

m′∑
k=1

χλcjdkΦ̂ML (−χ (uj + λvk)) , (54)

where Φ̂ML(.) is the scale-free version of the Laplace-
transformed relaxation function φ̂ML(.),

Φ̂ML(u) = 1
u(1 + u−α) , (55)

χ and λ are the dimensionless scaling parameters

χ = στ and λ = ε

σ
, (56)

and {uj} and {vk} are the roots of the polynomials Q(u)
and Q′(v), respectively. The coefficients

cj = P (uj)
Πm
k=1,k 6=j

(
uj − uk

) , (57)

dk = P ′(vk)
Πm′
l=1,l 6=k

(
vk − vl

) , (58)

are the residues of the dimensionless expressions
P (u)/Q(u) and P ′(v)/Q′(v), evaluated at the respective
roots of the denominator polynomials. We have thus
Q(uj) = 0 and Q′(vk) = 0. The final expression (54)
for ξML is thus the linear superposition of simple terms
of the form (55). Coding ξML as a compiled function
leads to sufficiently short execution times which allow
for integrating this function into a fitting procedure.

D. Numerical test

To obtain a systematic picture of the pseudoelastic
contribution as a function of τ and α, we compute it
according to Eq. (54) for α = k × 0.1, k = 0, . . . , 10.
In view of later applications we define σ to be resolu-
tion (HWHM) of the IN16B spectrometer, σ = 1.75µeV ,
and we set ε = 3σ. We vary then χ ∈ [στmin, στmax],
where τmin = 0.1 ps and τmax = 104 ps (solid lines). For
comparison we compute ξML by numerical integration of
φ

(R)
ML(ω), choosing the same values for α , σ, and ε and

fixing τ to the discrete values τ = 10j ps, j = −1, . . . , 4
(points). Defining the matrices ξML ≡ (ξML[j, k]) and
ξ

(n. i.)
ML ≡ (ξ(n. i.)

ML [j, k]), where “n.i.” stands for “numeri-
cal integration”, we find that

‖ξ(n. i.)
ML − ξML‖ = 3.45× 10−6,

where ‖ . . . ‖ is defined as maximum singular value of
the difference matrix. The results of the calculations
are shown in Fig. 1. On observes that for “good res-
olutions”, where στ < 1, the pseudoelastic contribu-
tions increases with decreasing α, and the opposite is
true for “bad resolutions”, where στ > 1. We note
that limα→0 φML(t) = 1/2 for any t > 0, which explains
the results for α = 0. All calculations have been per-
formed with Padé-approximations of order m = 8 for
the denominator polynomials Q(u) and Q′(u) and or-
der n = 8 for the corresponding numerator polynomials,
P (u) and P ′(u), choosing s = 1 as reference point. Con-
structing the Padé-approximant for the resolution func-
tion through

R̃Padé(ω) ≡ 1
π
<
{
P (iω)
Q(iω)

}
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FIG. 1: Pseudoelastic contribution ξML as a function of
χ ≡ στ and α. The solid lines correspond to the calculation
according to Eq. (54) and the points to control calculations
by numerical integration. More explanations are given in the
text.

we find that

|R̃Padé(ω)− R̃(ω)| < 10−6

in the relevant ω-domain. All computations have been
performed with the Wolfram Mathematica software.27

IV. APPLICATIONS

A. QENS analysis of Myelin Basic Protein

To illustrate the pseudoelastic contribution to elas-
tic scattering we consider now a concrete example re-
lated to a recently published QENS study of Myelin Ba-
sic Protein (MBP) in aqueous solution.15 Myelin Ba-
sic Protein is an elementary constituent of the myelin
sheath of nerves and in aqueous solution it is an intrin-
sically disordered protein (IDP). The incoherent QENS
spectra for the study cited above have been recorded
on the new IN16B spectrometer of the Institut Laue-
Langevin, using the BATS option (Backscattering And
Time-of-flight Spectrometer) with an instrumental res-
olution (FWHM) of 3.5 µeV. The translational diffu-
sion constant, D, of MBP was measured separately by
dynamic light scattering (DLS) and was then injected
into the fit, writing F (+)(q, t) = exp(−Dq2|t|)F (+)

int (q, t),
where F (+)

int (q, t) is the symmetrized intermediate scat-
tering function for internal motions, the generic form of
which is given by Eq. (36). The implicit assumption
is here that global and internal motions are not corre-
lated. As mentioned in Ref. [15], the resulting fits for
EISF , α, and τ vary only little if the diffusion constant
is simply neglected. This is illustrated in Fig. 2, which
shows a log-log plot of the Fourier spectrum of the fit-
ted model relaxation function for MBP in D2O buffer
(T = 283 K, q = 1.2/Å) for the dynamical range of the
instrument, together with the corresponding diffusion-
broadened counterpart resulting from the damping factor
exp(−Dq2|t|) of the intermediate scattering function. We

ϕ

ML(ω)

ϕ

ML

(ϵ)
(ω)

0.001 0.005 0.010 0.050 0.100

0.5

1

5

10

50

THz

F
T
re
la
xa
tio
n
fu
nc
tio
n

MBP, Q=1.2 Å-1

FIG. 2: Impact of global diffusion on the Fourier spectrum
of the model relaxation function for MBP in D2O buffer at
T = 283 K and q = 1.2/Å. The solid blue line labels the relax-
ation function and the yellow line the corresponding function
with the diffusion damping factor, where D = 3.3Å2

/ns from
DLS. The vertical dashed indicates the instrumental resolu-
tion (FWHM).

take here D = 3.3Å2
/ns from DLS. Having this figure

in mind, the resolution-deconvolved intermediate scat-
tering function can therefore be fitted directly with the
model (36). It is worthwhile mentiong that a more so-
phisticated treatment of global protein motions, includ-
ing rotational diffusion,28–31 would be needed for the
analysis of QENS data with even higher ω-resolution,
but are fortunately not necessary here, noting that rota-
tional and and translational degrees of freedom in MBP
are difficult to disentangle.
The impact of pseudoelastic scattering on the observed

elastic intensities is illustrated in Fig. 3, which shows
again the Fourier spectrum of the fitted model relax-
ation function φ̃ML(ω) for the same parameters as in
Fig. 2 (blue line), together with the model resolution
function (yellow line), where the instrumental resolu-
tion (HWHM) corresponds to σ = 0.0027 THz, and the
resulting resolution-broadened spectrum, φ̃(R)

ML(ω) (red
line). The (dimensionless) area in light red is the cor-
responding pseudoelastic contribution, which is for this
example ξML ≈ 0.47 with ε = 3σ. The difference between
the model spectrum and its resolution-broadened version
should also be noticed.
An important result of the study in Ref. [15] was

that the fitted EISF vanishes. This can be explained
by the fact that MBP in solution is a very flexible
molecule, such that 〈exp(iq · R̂j)〉 ≈ 0. In the Gaussian
approximation32,33 (in q ≡ |q|) of the elastic amplitude
one would write

EISF (q) |q|→0∼ 1
N

∑
j∈H

e−
1
3 |q|

2〈û2
j〉 ≈ 0, (59)

where 〈û2
j 〉 ≡ 〈(R̂j−〈R̂j〉)2〉 is the mean square position

fluctuation of (hydrogen) atom j. For smaller q-values a
vanishing EISF stands thus for large motional amplitudes
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σ=1.75μeV ≃ 0.0027 THz, τ=115 ps, α=0.75

FIG. 3: Model relaxation function φ̃ML(ω) (blue line), model
resolution function (yellow line) and the resulting convolution
φ̃

(R)
ML(ω) (red line) for the resolution of the IN16B spectrometer

at ILL. The values for τ and α are taken from the fit param-
eters shown in Fig. 4 (three-parameter fit for |q| = 0.8/Å−1).
The vertical dotted lines indicate the instrumental resolution
and the light red area corresponds to the pseudoelastic con-
tribution of ξML ≈ 0.47 for this example.

of the atoms. Keeping in mind that the EISF is a “theo-
retical quantity”, EISF (q) = Finc(q,∞), which can only
be determined by assuming a model, we can now check
the fits of the three-parameter model (36) with a two-
parameter fit, where the EISF is eliminated according to
Eq. (27). The results in Fig. 4 show that α and τ change
only slightly comparing the two- and three-parameter fits
and in particular that the vanishing EISF from the three-
parameter fits is confirmed if one considers the relevant
scale for this quantity. This means that the measured
elastic intensity (bottom panel, green points) is entirely
due to the “pseudoelastic contribution” defined through
Eq. (54). For its calculation we used the same Padé ap-
proximations as for the numerical test described in Sec-
tion IIID. We note here that the standard estimation
of the parameter errors for the three-parameter fits (yel-
low dots) leads to error bars which are sometimes hardly
visible in the plots and cannot be performed for the two-
parameter fits. The reason is purely technical – namely
that in the latter case the EISF “parameter” is a com-
piled function which is passed as an argument to the fit
routine of the Mathematica software.27 Concerning this
point, we think that the error of the fit parameters is
anyway better estimated by comparing the results of the
three- and two-parameter fits.

B. QENS analysis of Myoglobin

To show that the model (36) does not systematically
lead to vanishing EISFs for proteins in solution, we have
analyzed QENS data from apo-myoglobin at T = 284
K in D2O buffer (pD = 6), which have been recorded
on the IN5 spectrometer at the Institut Laue-Langevin
in Grenoble, at a resolution (FWHM) of 11.6µeV .34 In
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E
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FIG. 4: From top to bottom: Characteristic time scale, τ ,
form parameter, α, and elastic scattering amplitude, EISF ,
for incoherent QENS from MBP in solution. Blue dots corre-
spond to a two-parameter fit, where EISF ≡ EISF (τ, α, σ)
according to Eq. (42) and yellow points to a three-
parameter fit. Concerning the EISF, the green points corre-
spond to the measured elastic intensity Fm(∞) ≡ Fm(q,∞)
defined in Eq. (25) and on the scale of the plot the results
two- and three-parameter plots are indistinguishable.

contrast to MBP, myoglobin is a compactly folded glob-
ular protein of about the same weight, but with a well-
defined three-dimensional structure containing eight α-
helices as secondary structure elements. Fig. 5 shows
that here, as for MBP, global diffusion can be neglected
for the analysis of the QENS spectra. We insert here a
global diffusion coefficient of D = 10.1Å2

/ns, which is
the mean of the values reported in Refs. [35] and [36],
respectively, but the exact value is here not important.
We note in this context that a somewhat smaller value
of D ≈ 8Å2

/ns is obtained by a very rough estimation
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FIG. 5: Impact of global diffusion on the model dynamic
structure factor at q = 0.7/Å for myoglobin in solution. The
legends are the same as in Fig. 2.

from the Stokes-Einstein relation, D = kBT/6πηRh, in-
serting here a hydrodynamic radius of Rh = 2 nm for a
myoglobin molecule and for η the kinematic viscosity of
water at 284K (η = 1.306mPa s).37 The hydrodynamic
radius is here calculated from PDB structure 1BVC for
apo-myoglobin, assuming the latter to be a sphere.

Since the impact of global diffusion can be neglected,
model (36) has again be fitted directly to the resolution-
deconvolved intermediate scattering function. Fig. 6,
bottom panel, shows that the EISF for myoglobin is
clearly non-vanishing and that both the three- and the
two-parameter fits give again similar results. The fact
that the atomic motions in a globular, compactly folded
protein are more hindered than in a polymer-like intrinsi-
cally disordered protein like MBP is thus clearly reflected
in the corresponding EISFs, and it should be noted that
this effect is much more pronounced for the resolution-
corrected elastic intensities than for the measured ones.
It should also be noted that both the characteristic time
scale, τ , and the form parameter, α, are systematically
smaller for myoglobin, reflecting more hindered localized
motions of the atoms in this more compactly folded pro-
tein.

C. Resolution correction for 〈û2〉

The Gaussian approximation (59) of the EISF is also
known as Debye-Waller factor and has been used for
decades to analyse “elastic scans” of incoherent neutron
scattering from D2O-hydrated protein powders in the low
q-region, in order to infer the average mean square po-
sition fluctuations of the (hydrogen) atoms in the pro-
tein from these data. There is a large bulk of literature
on that subject and we cite here only Refs. [7,38,39].
It follows then from Eqs. (30) and Eq. (59) that the
“true”, resolution-corrected mean square position fluc-
tuation, averaged over all atoms, is given by

〈û2〉
q→0
≈ − 3

q2 log
(
EISFm(q)− ξ(q)

1− ξ(q)

)
. (60)
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FIG. 6: The same quantities as in Fig. 6 for myoglobin in
solution. More details are given in the text.

We assume here an isotropic sample and indicate explic-
itly the dependency of all involved quantities on q ≡ |q|.
Writing EISFm(q) = exp(−q2〈û2〉m/3) and developing
Expression (60) into a power series in ξ(q) we obtain

〈û2〉 ≈ 〈û2〉m +
∞∑
n=1

3
nq2

(
e
n
3 q

2〈û2〉m − 1
)
ξ(q)n

q→0
≈ 〈û2〉m

∞∑
n=0

ξ(q)n,

where the geometrical series can be summed up to give

〈û2〉
q→0
≈
〈û2〉m

1− ξ(q) . (61)

Fig. 7 shows the correction factor 1/(1− ξ) which needs
to be applied to obtain the “true”, resolution-corrected



9

0.001 0.010 0.100 1 10

1

5

10

50

100

χ=στ

co
rr
.f
ac
to
r

Correction factor for 〈u2〉

α=0.

α=0.1

α=0.2

α=0.3

α=0.4

α=0.5

α=0.6

α=0.7

α=0.8

α=0.9

α=1.
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square position fluctuations into the resolution-corrected
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mean square position fluctuations from the measured
ones. At a first glance, the large correction factors for
“bad resolutions” and close to exponential relaxation may
surprise, but they can be understood noting that in this
case an elastic scan contains practically the whole inte-
gral over the quasielastic line such that ξ / 1.

V. CONCLUSIONS AND DISCUSSION

In the paper we have presented a quasi-analytical
method for computing the pseudoelastic contribution
of quasielastic scattering to the elastic neutron scatter-
ing amplitude, which enables the estimation of the true
elastic scattering amplitude for the Mittag-Leffler relax-
ation model. Due to the computational efficiency of the
method, which is based on Padé approximants for the
Laplace transformed relaxation and resolution functions,
the true elastic scattering amplitude can be eliminated
in the model (36) by using the measured elastic intensity
and the two parameters α and τ of the ML relaxation
function together with the instrument resolution, σ, as
input. We have applied the method to confirm the results
of a recent analysis of incoherent QENS spectra from the
internal dynamics of Myelin Basic Protein in solution,15
which revealed in particular a vanishing EISF. MBP is
an intrinsically disordered protein and to demonstrate
that the vanishing EISF is the result of its “floppiness”
and the corresponding large motional amplitudes of the
atoms, we performed a comparative study for myoglobin
in solution. Myoglobin has about the same weight as
MBP, but in contrast to the latter it is a globular pro-
tein with a well defined structure. As one would expect,
we find here a clearly non-vanishing EISF as a result of
the more hindered atomic motions in a compactly folded
protein. An important result in this context is that the
resolution-corrected EISF shows this result much more
clearly than the measured one. We have also shown that
the resolution corrections of the elastic intensity may also
strongly impact atomic mean square position fluctuations
which are routinely extracted from so-called elastic scans.

It should be mentioned again that the elastic intensity

is a “theoretical quantity”, which can only be extracted
from experimental QENS spectra by assuming a model
for the relaxation dynamics of the protein under consid-
eration. In that light, our analysis is a consistency check
for the the ML relaxation model which does in princi-
ple not exclude other models for the relaxation function.
There is, however, a good reason to use the ML relaxation
function whenever the relaxation function is supposed to
have the asymptotic power law form (35) and the tran-
sition from short-time ballistic motion to the asymptotic
dynamics cannot be resolved on the instrument under
consideration.
The ML relaxation function has the remarkable prop-

erty of being “weakly self-similar”40 for every t > 0 and
the physical and mathematical reasons for its “universal”
validity as relaxation function are developed in Ref. [41].
We resume here the essential points. From a mathemat-
ical point of view the ML relaxation function verifies an
integro-differential equation of the form24,42

∂tφML(t) + τ−α
d

dt

∫ t

0
dt′

(t− t′)α−1

Γ(α) φML(t′)︸ ︷︷ ︸
∂1−α
t φML(t)

= 0, (62)

where ∂1−α
t denotes a fractional derivative43 of order

1− α. From a physical point if view Eq. (62) can be
considered as a special form of the general equation of
motion

∂tφ
(+)(t) +

∫ t

0
dt′ κ(+)(t− t′)φ(+)(t′) = 0, (63)

that any symmetric time correlation function fulfills ac-
cording to the Mori-Zwanzig theory of the General-
ized Langevin equation.44–46 Here κ(+)(t) the associated
memory kernel, which is itself a time autocorrelation
function that can be formally derived from first prin-
ciples. The only point that matters here is to consider
that κ(+)(t) has two characteristic time scales, τ and τ∗,
where τ characterizes the asymptotic regime of the cor-
relation function φ(+)(t) and τ∗ the transition to that
regime. In Ref. [41] it is then shown that the ML relax-
ation function emerges whenever τ∗ � τ . In that light
the fractional derivative thus represents the asymptotic
form of a memory kernel.
Another point that merits some discussion is the q-

dependence of τ and α that can be understood on physi-
cal grounds and that influences the pseudoelastic contri-
bution to the elastic scattering. The decrease of τ with
q simply reflects the general observation that more lo-
calized motions in proteins, resulting for instance from
side-chains, are faster than those involving many atoms,
such as large conformational rearrangements. The obser-
vation that α increases instead with q can be explained
by the fact that descreasing q corresponds to decrease the
spatial resolution, mixing in more and more slow modes,
and the increasingly non-exponential character of the re-
laxation function is reflected in a decrease of α with q.
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In a compact protein, like myoglobin, where the modes
describing the internal relaxation dynamics are strongly
coupled, this effect is less pronounced than in a polymer-
like protein like MBP, where local entities diffuse almost
independently. It should be noted that in the latter case
α ≈ 1 for higher q-values.

We finally emphasize that our method is prepared to
deal with coherent scattering in general. This aspect
is for instance important for the increasing number of
QENS studies of proteins in deuterated aqueous solutions
(D2O-buffer), where coherent scattering from the solvent
becomes visible at higher momentum transfers ' 1.5/Å.

Appendix A: Derivation of Expression (54)

We start from eq. (48) and insert Expression (52) for
the Padé approximation of the Laplace transformed in-
strumental time window. In addition we use that

φ̂ML(s) = τ Φ̂ML(sτ)

to obtain in a first step

φ̂
(R)
ML(s) = 1

2πi

∮
C

ds′

σ
φ̂ML(s− s′)P (s′/σ)

Q(s′/σ)
s′/σ→u= 1

2πi

∮
C

du τ Φ̂ML(τ(s− σu))P (u)
Q(u)

= 1
σ

{
1

2πi

∮
C

duχΦ̂ML

(
χ
( s
σ
− u
)) P (u)

Q(u)

}
.

Writing Q(u) = Πm
k=1
(
u − uk

)
and defining the coeffi-

cients

cj = P (uj)
Πm
k=1,k 6=j

(
uj − uk

)
it follows then from the residue theorem of complex anal-
ysis that

φ̂
(R)
ML(s) = 1

σ

m∑
j=1

χcjΦ̂
(
χ
( s
σ
− uj

))
. (A1)

This expression is now inserted into the contour inte-
gral (49), and appropriate changes of the integation vari-

ables lead to

ξML = 1
π

{
1

2πi

∮
C

ds′ 1
σ

m∑
j=1

χcjΦ̂
(
χ

(
−s
′

σ
− uj

)) P ′(s′/ε)
Q′(s′/ε)


s′/σ→u= 1

π

{
1

2πi

∮
C

du
m∑
j=1

χcjΦ̂ (χ (−u− uj))

 P ′(uσ/ε)
Q′(uσ/ε)


ε/σ→λ,u/λ→v= 1

π

{
1

2πi

∮
C

dv
m∑
j=1

λχcjΦ̂ (χ (−λv − uj))

 P ′(v)
Q′(v)

 .

Writing Q′(v) = Πm′

l=1
(
v−vl

)
and defining the coefficients

dk = P (uk)
Πm′
l=1,l 6=k

(
vk − vl

) ,
we get again from the residue theorem the final result

ξML = 1
π

m∑
j=1

m′∑
k=1

λχcjdkΦ̂ (−χ (uj + λvk)) , (A2)

where χ ≡ στ and λ ≡ ε/σ.
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