001     1022510
005     20240206204912.0
024 7 _ |a 10.48550/ARXIV.2112.10730
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01500
|2 datacite_doi
037 _ _ |a FZJ-2024-01500
100 1 _ |a Winter, Nils R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a More Alike than Different: Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder across Neuroimaging Modalities
260 _ _ |c 2021
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1707226121_7512
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Introduction: Identifying neurobiological differences between patients suffering from Major Depressive Disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta- and mega-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression. Methods: Here, we systematically investigate healthy controls and MDD patients across a comprehensive range of modalities including structural magnetic resonance imaging (MRI), diffusion tensor imaging, functional task-based and resting-state MRI under near-ideal conditions. To this end, we quantify the upper bounds of univariate effect sizes, predictive utility, and distributional dissimilarity in a fully harmonized cohort of N=1,809 participants. We compare the results to an MDD polygenic risk score (PRS) and environmental variables. Results: The upper bound of the effect sizes range from partial eta squared = .004 to .017, distributions overlap between 89% and 95%, with classification accuracies ranging between 54% and 55% across neuroimaging modalities. This pattern remains virtually unchanged when considering only acutely or chronically depressed patients. Differences are comparable to those found for PRS, but substantially smaller than for environmental variables. Discussion: We provide a large-scale, multimodal analysis of univariate biological differences between MDD patients and controls and show that even under near-ideal conditions and for maximum biological differences, deviations are extremely small and similarity dominates. We sketch an agenda for a new focus of future research in biological psychiatry facilitating quantitative, theory-driven research, an emphasis on computational psychiatry and multivariate machine learning approaches, as well as the utilization of ecologically valid phenotyping.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neurons and Cognition (q-bio.NC)
|2 Other
650 _ 7 |a Quantitative Methods (q-bio.QM)
|2 Other
650 _ 7 |a FOS: Biological sciences
|2 Other
700 1 _ |a Leenings, Ramona
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ernsting, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sarink, Kelvin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fisch, Lukas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Emden, Daniel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blanke, Julian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Goltermann, Janik
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Opel, Nils
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Barkhau, Carlotta
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Meinert, Susanne
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Dohm, Katharina
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Repple, Jonathan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mauritz, Marco
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gruber, Marius
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Leehr, Elisabeth J.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Grotegerd, Dominik
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Redlich, Ronny
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Jansen, Andreas
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Nenadic, Igor
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Nöthen, Markus
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Forstner, Andreas
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Rietschel, Marcella
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Groß, Joachim
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Bauer, Jochen
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Heindel, Walter
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Andlauer, Till
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 27
|u fzj
700 1 _ |a Kircher, Tilo
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Dannlowski, Udo
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Hahn, Tim
|0 P:(DE-HGF)0
|b 30
773 _ _ |a 10.48550/ARXIV.2112.10730
|p 1-8
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1022510/files/Winter%20et%20al%2021.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1022510/files/Winter%20et%20al%2021.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1022510/files/Winter%20et%20al%2021.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1022510/files/Winter%20et%20al%2021.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1022510/files/Winter%20et%20al%2021.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1022510
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Institute for Translational Psychiatry, University of Münster, Germany Albert-Schweitzer-Campus 1, D-48149 Münster E-Mail: nils.r.winter@uni-muenster.de
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 27
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21