001     1022517
005     20250204113801.0
024 7 _ |a 10.1523/JNEUROSCI.0856-23.2024
|2 doi
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01503
|2 datacite_doi
024 7 _ |a 38290847
|2 pmid
024 7 _ |a WOS:001240724800007
|2 WOS
037 _ _ |a FZJ-2024-01503
082 _ _ |a 610
100 1 _ |a Chu, Congying
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Co-representation of functional brain networks is shaped by cortical myeloarchitecture and reveals individual behavioral ability
260 _ _ |a Washington, DC
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712723610_14802
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating the functional roles of specific brain networks, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, i.e., co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, i.e., the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Li, Wen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shi, Weiyang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Haiyan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Jiaojian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Yong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Liu, Bing
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 7
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 8
700 1 _ |a Fan, Lingzhong
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Jiang, Tianzi
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1523/JNEUROSCI.0856-23.2024
|g p. e0856232024 -
|0 PERI:(DE-600)1475274-8
|n 3
|p e0856232024 -
|t The journal of neuroscience
|v 44
|y 2024
|x 0270-6474
856 4 _ |y Published on 2024-03-27. Available in OpenAccess from 2024-09-27.
|u https://juser.fz-juelich.de/record/1022517/files/e0856232024.full.pdf
856 4 _ |y Published on 2024-03-27. Available in OpenAccess from 2024-09-27.
|x icon
|u https://juser.fz-juelich.de/record/1022517/files/e0856232024.full.gif?subformat=icon
856 4 _ |y Published on 2024-03-27. Available in OpenAccess from 2024-09-27.
|x icon-1440
|u https://juser.fz-juelich.de/record/1022517/files/e0856232024.full.jpg?subformat=icon-1440
856 4 _ |y Published on 2024-03-27. Available in OpenAccess from 2024-09-27.
|x icon-180
|u https://juser.fz-juelich.de/record/1022517/files/e0856232024.full.jpg?subformat=icon-180
856 4 _ |y Published on 2024-03-27. Available in OpenAccess from 2024-09-27.
|x icon-640
|u https://juser.fz-juelich.de/record/1022517/files/e0856232024.full.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1022517
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a Tianzi Jiang at jiangtz@nlpr.ia.ac.cn
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2022
|d 2024-12-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-14
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2022
|d 2024-12-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21