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Co-representation of Functional Brain Networks Is Shaped
by Cortical Myeloarchitecture and Reveals Individual
Behavioral Ability

Wen Li,"”* Weiyang Shi,' Haiyan Wang,' Jiaojian Wang,* ““Yong Liu,” Bing Liu,’

»3,9,10%

Congying Chu,"”
David Elmenhorst,”* Simon B. Eickhoff,”** Lingzhong Fan,"”*** and “Tianzi Jiang'
!Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China,
Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jiilich, Jiilich 52428, Germany, 3University of Chinese Academy of Sciences,
Beijing 100049, China, *State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of
Science and Technology, Kunming 650500, China, *School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876,
China, °State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China, “Institute of Neuroscience and
Medicine, Brain & Behaviour (INM-7), Forschungszentrum Jillich, Jiilich 52428, Germany, 8Institute of Systems Neuroscience, Medical Faculty, Heinrich
Heine University, Diisseldorf 40204, Germany, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese
Academy of Sciences, Beijing 100049, China, and '°Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan
Province, China

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their
functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination
is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed
a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To
further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and
intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain
location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical
regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic)
regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, para-
limbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial
distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic
profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual beha-
vioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically
configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical orga-
nization of the brain by emphasizing the assembly of functional networks.
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Significance Statement

blueprint to support neurocognitive computations.

-

The human brain is functionally organized into large-scale functional networks that are highly structured in space and time.
How these networks are coordinated by the physical embedding of the brain in space is still unclear. We propose the
co-representation of functional networks, as a new concept accompanied by two quantitative indexes, to characterize the
spatial coordination between networks. We found that the co-representation pattern was anchored along a sensory-fugal
axis of cytoarchitectural classes. This pattern is shaped by the cortical myeloarchitecture, demonstrated by both neuroana-
tomical and transcriptomic data. The manifestation of co-representation is a reliable predictor of individual behavioral per-
formance. Our findings indicate the co-representation of functional networks is built upon an anatomically configured
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Introduction

The human brain is functionally organized into a set of macro-
scale functional networks subserving complex behaviors
(Mesulam, 1990; Power et al., 2011; Yeo et al., 2011). With the
recent advances in network neuroscience (Bassett and Sporns,
2017), functional networks have gained traction to characterize
the localized functions in brain areas and their neurocognitive
relevance (Genon et al., 2018; Ito et al., 2020b), emerging as an
important window into distributed information processing in
the human brain. Understanding how the brain navigates the
coordination among the functional networks that are highly
structured in space and time remains an imperative neuroscien-
tific endeavor that will provide fundamental insights into the
information-processing architecture of the human brain.

Accumulating evidence from multiple independent efforts
suggests that functional networks are coordinated to harness cog-
nitive functionality. Specifically, the interaction between the
brain functional networks has been demonstrated to efficiently
predict a set of neurocognitive functions (Sui et al., 2020; Chen
et al, 2022), such as attention (Rosenberg et al., 2016; Wu et
al,, 2020) and working memory (Yamashita et al., 2018), even
with linear models. Also, the spatial topography of multiple func-
tional networks has been found to collectively predict, for exam-
ple, executive function (Cui et al., 2020) and reading ability
(Kong et al, 2019). In contrast, disrupting the coordination
between the functional networks can be biomarkers of major psy-
chiatric and neurological disorders to predict clinical symptoms
(Dadi et al., 2019; Cui et al., 2022). Consistent with the triple net-
work model (Menon, 2011), the joint dysfunction of functional
networks across psychiatric disorders reflects the complex coor-
dination between them (Sha et al., 2019; Perovnik et al., 2022).
More inherently, direct evidence has shown that the temporal
correlations between brain functional networks are influenced
by genetic factors, highlighting the potential genetic controls
on the layout of brain functional networks (Yang et al., 2016;
Zhao et al., 2022). Therefore, the coordination among functional
networks is a fundamental facet of interest in the human brain’s
functional organization.

However, traditional measures of network coordination mainly
focused on the relationship between functional networks, which
cannot adequately capture the spatial configuration, such as the
distinct roles of brain areas in reconciling the network-by-network
coordination, about how the brain maintains it. Especially, com-
pared with the previous studies that investigated the functional
brain networks mainly based on predefined atlases (ROI-based;
subjected to the selection of brain atlases), it is still not clear
how we could pattern the spatial coordination of functional

networks in a continuous manner (vertex-wise; versatile in differ-
ent scenarios). Without the quantified distribution of coordina-
tion, it would be largely hampered to further investigate the
neural basis and the biological relevance for manifesting the coor-
dination among functional networks. Therefore, based on the
canonical individualized functional networks, we addressed the
fundamental question about the spatial configuration of network
coordination by bringing up the concept of co-representation
that is defined at each brain location, that is, vertex-wise, as a one-
dimensional vector composed of the extent to which the activity of
each network expresses here.

To outline the spatial distribution pattern of co-representation
for illustrating the distinct roles of brain areas in facilitating net-
work coordination, we proposed two unitless vertex-wise indexes
from complementary aspects, that is, the co-representation spe-
cificity index (CoRS) and the co-representation intensity index
(CoRI). CoRS was expected to capture to what extent the
co-representation was driven by specific networks by measuring
the anisotropy among the expression values of networks at a
brain location. CoRI was expected to reflect the overall expres-
sion of networks at a brain location. Furthermore, having known
the evidence that the emergence of brain functions was under
structural and genetic constraints (Burt et al.,, 2018; Suarez et
al., 2020; Zachlod et al., 2022), it would be worth digging into
the biological underpinnings of the captured pattern, which
could contribute to a more complete understanding of the net-
work coordination. Especially, given the important role of mye-
lination in the information transfer in the human brain (Glasser
et al., 2014; Salzer and Zalc, 2016), it was remarkable to evaluate
the effect of the cortical myeloarchitecture. Meanwhile, discover-
ing the neurocognitive relevance of the captured pattern might
facilitate our understanding of the biological significance of hav-
ing the coordination of brain functional networks. An overview
of how these aspects were juxtaposed was shown in Figure 1.

Our analyses revealed that both CoRS and CoRI have spa-
tially stable distribution across multiple hierarchical levels of
network granularities and between datasets, situating the roles
of brain regions in network coordination along a sensory-fugal
cytoarchitectural axis. With the captured patterns, we can
demonstrate the role of myeloarchitecture in sculpting the spa-
tial pattern of co-representation by establishing links between
the two indexes and the multifaceted cortical myelin content
presented in neuroanatomical and gene expression profiles.
We further assessed the biological relevance of manifesting net-
work coordination by leveraging the two indexes to predict
individual behaviors. These results present a new view on the
spatial configuration embedded in the brain network
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Figure 1.

coordination and highlight its neurobiological underpinnings
and neurocognitive meanings.

Materials and Methods

We here introduced the analytic details for characterizing the
co-representation of RSNs. Based on the spatial distributions of RSNs
and their temporal activities derived by the decomposition of individual
rfMRI data with the reference from the group independent component
analysis (ICA), we defined two indexes, that is, CoRS and CoRI, to
describe the topological signatures of co-representation for each cortical
vertex in each individual. To illustrate the neurobiological underpinnings
and the neurocognitive relevance of the captured pattern of
co-representation, we further capitalized on multimodal neuroimaging,
transcriptomic, and behavioral evidence. More details would be available
in the following part.

MRI data and preprocessing. In this study, rfMRI data from the
Human Connectome Project (HCP S1200 release) were used (Van
Essen et al., 2013). Only healthy participants who had 4 x 15 min runs
of rfMRI data were included (1,003 participants, ages 22-37 years, 534
females). The rfMRI data were acquired on a 3T Siemens
Connectome-Skyra scanner with gradients customized for the HCP.
Briefly, a gradient-echo echo-planar imaging (EPI) sequence (1,200
time frames; TR =720 ms; TE = 33.1 ms; flip angle, 52° 2.0 mm isotropic
voxels; multiband factor, 8) was adopted for scanning each run of rfMRI
data, which was collected with the participants’ eyes open. More details
about the rfMRI acquisition are available in the published description of
the HCP database (Ugurbil et al., 2013). For the rfMRI data preprocess-
ing, we adopted the preprocessed data provided by the HCP database,
which followed the HCP FIX-denoising pipeline (Glasser et al., 2013;
Smith et al, 2013b). The processing mainly included correction for
EPI distortion, temporal filtering (high-pass filter with 2,000 s), and non-
aggressive regression of the structured artifacts identified by ICA-FIX
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) and 24 confound
time series derived from the motion estimation (Satterthwaite et al.,
2013). The rfMRI data were finally represented in the standard grayordi-
nate space (91,282 grayordinates: cortical surface vertices plus subcorti-
cal gray matter voxels) by using multimodal surface matching (Robinson
et al,, 2014, 2018).

How does the brain spatially
coordinate the functional networks?

« What is the biological basis
underlying the coordination ?

“+ What does the brain configure
the coordination of functional
networks for?
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Overview of the current study on the co-representation of functional networks in the human brain.

To validate the cortical distribution of the two indexes (CoRS and
CoRI), we also used data from the Lifespan Human Connectome Project
in Development (HCP-D, Lifespan HCP Release 1.0; Somerville et al.,
2018). Only the healthy adults (age >18 years) who had 4 x 6.5 min runs
of rfMRI data were included (111 subjects, ages 18-22 years, 62 females).
The resting-state fMRI (rfMRI) data were acquired on a 3 T Siemens
Prisma platform with a 32-channel head coil. Briefly, a gradient-echo
EPI sequence (478 time frames; TR =800 ms; TE =37 ms; flip angle, 52°
2.0 mm isotropic voxels; multiband factor, 8) was adopted for scanning
each run of rfMRI data collected with eyes open. More details about the
rfMRI acquisition were available in the published description of the
HCP-D database (Harms et al., 2018). The preprocessing pipeline followed
the publicly available HCP pipeline v4.1.3 (more details https:/github.
com/Washington-University/Pipelines).

Behavior data. Capitalizing on the behavior measures (BMs) pro-
vided by the HCP database for each participant (the open-access
ones), we included 59 BMs covering six categories including alertness,
cognition, emotion, motor, sensory, and personality. More details are
provided in ConnectomeDB (https:/db.humanconnectome.org). We
only included the unadjusted scale score when it was applicable. These
assessments represented general domains of human behavior. For the
analysis related to these BMs, we only considered participants with
both 59 measures and four completed rfMRI runs, which restricted the
samples to 974 participants (ages 22-37 years, 514 females).

Cortical myeloarchitecture data. Three measures of the cortical mye-
loarchitecture were included in this study. Specifically, we selected the
T1w/T2w ratio (Glasser and Van Essen, 2011), neurite density index
(NDI; Fukutomi et al., 2018), and orientation dispersion index (ODI;
Fukutomi et al., 2018), which were estimated based on the HCP dataset.
The group averages of these data are publicly available (for the T1w/T2w
ratio, https:/balsa.wustl.edu/wN6Zv; for the cortical NDI and ODI,
https://balsa.wustl.edu/study/show/k77v).

Gene expression data and preprocessing. We adopted the regional
microarray-based expression data of the Allen Human Brain Atlas
(AHBA; Hawrylycz et al,, 2012), which consisted of over three thousand
spatially distinct samples of brain tissues from six neurotypical postmor-
tem adult brains. Because two brains were sampled on both hemispheres


https://github.com/Washington-University/Pipelines
https://github.com/Washington-University/Pipelines
https://github.com/Washington-University/Pipelines
https://db.humanconnectome.org
https://db.humanconnectome.org
https://balsa.wustl.edu/wN6Zv
https://balsa.wustl.edu/wN6Zv
https://balsa.wustl.edu/study/show/k77v
https://balsa.wustl.edu/study/show/k77v

4 - ). Neurosci., March 27, 2024 - 44(13):0856232024

and the other four brains only had samples from the left hemispheres in
the AHBA dataset, we only used the data mapped to the left hemisphere.
The preprocessed AHBA gene expression data are now publicly available
along with their published guidelines (Arnatkeviciute et al., 2019). We
adopted the preprocessed data updated on 11 June 2020. The gene expres-
sion data were mapped to the HCP multimodal parcellation 1.0 atlas (HCP
atlas; Glasser et al., 2016). Since 3 out of 180 regions of the HCP atlas were
excluded because of the data quality control of the expression measures,
the size of the final region x gene matrix was 177 x 15,745.

Group independent component analysis. A group ICA was conducted
to detect a set of spatially independent components (ICs) across the par-
ticipants in HCP S1200 release. The group ICs were utilized to guide the
derivation of the individualized spatial maps and time series. By tuning
the number of ICs, low-/high-dimensional group ICs were found to cap-
ture large-scale RSNs or their corresponding subnetworks (Beckmann,
2012; Smith et al., 2013a, 2015; Glasser et al., 2016; Lv et al.,, 2018).
Here, we used RSNs to generally describe the spatial ICs derived from
ICA decompositions.

A set of sequential steps were used to conduct the group ICA for the
large dataset. First, the rfMRI data from each run was spatially demeaned
and then normalized to remove the unstructured noise (Glasser et al.,
2016). After that, the four runs from each participant were temporally con-
catenated to form a full run with 4,800 time frames. Second, to carry out
the group principal component analysis (PCA) for the large dataset at a
feasible memory cost, we adopted MELODIC’s Incremental Group-PCA
(MIGP) algorithm (Smith et al,, 2014). We kept the dimension of the
MIGP at 4,500. Third, a Wishart RollOff was performed to normalize
the unstructured noise in the PCA space. More information about this pro-
cessing is available in the Supplementary Methods of Glasser et al. (2016).
Finally, the group ICA was conducted using the processed PCA series
(dimension =4,500) by using FSL’s MELODIC tool (Beckmann and
Smith, 2004). The ICA was run using a wide range of numbers of ICs
(dimension, 25-150 at intervals of 1 and 150-300 at intervals of 5). The
purpose was to select several representative dimensionalities by following
Glasser et al. (2016) approach (Glasser et al., 2016). In brief, the operation
was designed to detect the dimensionality that could describe the data with
the smallest number of spatial clusters for which the corresponding surface
area (or volume size) exceeded 25 mm? (or 125 mm?>). As suggested in
Glasser et al.’s analyses (Glasser et al., 2016), we chose to select the last local
minimum which would be the one before the number of subcortical and
cerebellar clusters began to increase monotonically.

Individualized RSNs and the corresponding time series. Guided by the
spatial ICs from the group ICA, the individualized RSNs and the corre-
sponding time series were derived by following two sequential steps. The
concatenated rfMRI data (4,800 time frames) for each participant, which
had been spatially demeaned and normalized, were adopted here.

First, to compensate for the distortion and misalignment after spatial
registration, we adopted a weighted regression (Glasser et al., 2016),
which was adapted from the standard dual regression (Filippini et al.,
2009) by incorporating the estimation of both the distortion and the mis-
alignment from subject native space to standard space. The weighted
regression was found to improve the detection of individualized RSNs
(Glasser et al., 2016). The output from the weighted regression was indi-
vidualized spatial maps of the RSNs. Second, to further refine the corre-
sponding time series for each subject’s RSN considering the bias caused
by the assumption of spatial independence between the ICs (Bijsterbosch
etal., 2019), we adopted the thresholded regression approach, which had
better recovery of the ground truth temporal signals in simulations
(Bijsterbosch et al., 2019). Specifically, the spatial maps from the
weighted regression were applied using a threshold derived from a
Gaussian/gamma mixture model (Beckmann et al., 2005; Bijsterbosch
et al,, 2019), which was fitted to a histogram of the grayordinate values
of a spatial map as one Gaussian distribution for the background low-
weight signal and two gamma distributions (positive and negative
intense signals). If the probability, which measured the extent that the
signal of a grayordinate was from the gamma distributions rather than
from the Gaussian distribution, was <0.5, the grayordinate would be
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excluded from the spatial map by setting the corresponding value to
0. The thresholded spatial maps were then regressed against the subject
rfMRI data to derive the refined time series of the RSN.

Calculation of CoRS and CoRI. Generally, the calculation of vertex-
wise CoRS and CoRI was based on the expression of RSN at each cortical
vertex, which was measured by the partial correlation coefficient between
the time series of the vertex and each RSN. The CoRS and CoRI were
defined to measure the extent of specific and average expression of
RSN at each vertex. In detail, we first derived the expression of RSN at
each brain location for each participant. Let ts;; be the time series (1 x
4,800) of the ith grayordinate of participant j and TS be the time
series (1 x4,800) of the kth RSN of participant j, derlved from the
thresholded regression. To control the effects from other signal
sources, we then employed a partial temporal correlation to measure
the expression of the kth RSN at the ith grayordinate, that is,
peorr(ts;, TS}‘ | TS]-I, -,TS}‘_I, TS]’.‘“, -, TSV ) where pcorr is the
partial temporal correlation and N is the number of RSNs. To achieve a
stable estimate of the partial correlation coefficients, we used the ridge
regression in FSLNets (L2-norm regularization, regularization parameter
rho = 0.1; http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The derived spatial
map (S]’.‘ ) corresponded to the spatial expression of the kth RSN in the jth
participant.

Second, with respect to each Sk, we adopted the Gaussian/gamma mix-
ture model (Beckmann et al., 2005) to contrast the difference between the
background random-like weights and the intensely positive or negative sig-
nals that were associated with a specific RSN. Because one Gaussian distri-
bution and two gamma distributions were used to fit the histogram of S,
the Gaussian probability den51ty function (PDF) for the kth RSN of the
jth participants is set as pdf Caussian* Correspondmgly, the PDF of the gamma
distribution for the posmve signals is pdfGammal’ and the one for the
negative signals is pdfGammaz Each Sk was fed into FSL’s MELODIC tool
(Beckmann and Smith, 2004) to ﬁt the mixture model. We then
obtained the Earameters of the PDFS and their correspondmg welghts
Spec1ﬁcally, Ay’ is the weight for pdfGaussm, ! for pdmemal, and A’
for pdf Cammaz- Using the fitted PDFs and welghts, we defined the expression
of the kth RSN at the ith grayordinate for the jth participants as follows:

ko k k
pij = proby; * PGamma;; ,

where prob is the probability that the value of the ith grayordinate was from
the gamma dlstrlbutlons and PGamma is the cumulatlve probability of the

ith grayordinate based on the pdf Gammal OF pdf Gammaz» Which was decided by
the sign of the corresponding value. The probffj is defined as follows:

* df amma (V:()
probfij _ P Gammal Vi = ka,j >0,
* pdfGaussla.n(vi,j) + /\ * pdfGammal(Vi,j)
T % pdftd ) (VK
probf.;- = PP Gammaa 113 foj <0,

* pdfGaussla.n(vi,j) + /\ * pdfGammaZ(Vﬁj) ’

here, the v} ; is the partial correlation coefficient between the time series of the
ith grayordinate and the kth RSN in the jth participant. The probffj was used
to measure the normalized ratio between the signal and background noise.
The PGammaf{ ; evaluated the signal strength within the distribution of

signals.
Finally, we described the definition of the CoRS and the CoRI using
pffj. In detail, the CoRS is defined as follows:

\/N(Zszl (pl— E(pﬁf)f)

JN =D YN ph?

CORS,"J' = (1)
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Also, the CoRI is defined as follows:
CoRI;; = mean(pf{j) )

where CoRS;; € [0, 1] and CoRI;; € [0, 1]. Based on the definition,
CoRS could quantify the extent that the RSNs specifically expressed at
a grayordinate. When only one RSN had a nonzero expression value at
a grayordinate, that is, only one RSN specifically expressed here, CoRS
would be one. When a grayordinate had the same expression value for
all RSN, that is, RSN's evenly expressed here, CoRS at this grayordinate
would be zero. CoRI represented the intensity of the expressions of RSN.
The larger the value, the stronger the intensity. Additionally, for the anal-
ysis using CoRS and CoRI, we focused on the cortical surface. A surface-
based smoothing (sigma =2 mm for the Gaussian kernel) was applied to
the individual cortical maps of CoRS and CoRI by using the connectome
workbench (Marcus et al., 2011) before running further analyses.

For the validate data in the HCP-D dataset, we ran the same analytic
steps as described above, except that we set the dimension as 1,800 (1,912
time frames for the concatenated rfMRI data) for running the MIGP
analysis, as the comparatively short scanning time. In addition, we did
not run another optimal dimension search for the group ICA. Instead,
we directly used the previously determined one (131) by considering
the large sample size of the main analysis.

Hierarchical CoRS and CoRI. To further demonstrate whether CoRS
and CoRI could reflect the neural basis of network coordination across
the hierarchy of brain network organization, we proposed a hierarchical
version of the two indexes based on the hierarchical clustering results
derived by using the inter-RSNs temporal correlation (the similarity
matrix across RSNs; Smith et al., 2015). In detail, for each participant,
we calculated Pearson’s correlation between the time series of any two
RSNs from the thresholded regression to derive the individual network
matrix. The corresponding correlation coefficients were converted into
z statistics using Fisher’s transformation. We then averaged the individ-
ual z-statistic matrices to deduce the group-averaged network matrix.
Next, Ward’s hierarchical clustering was applied to the group-averaged
network matrix using the FSLNets toolbox. We mainly focused on three
hierarchical levels to detect the clusters, including 4, 7, and 17 clusters,
which had been previously found (Yeo et al.,, 2011; Smith et al., 2015).
For the ith grayordinate of subject j, the involvement with the kth RSN
had been previously defined as pi.fj. After deriving the clustering results,
each RSN was allocated to a specific cluster c. We then defined the involve-
ment of the ith grayordinate with the cth cluster of subject j (pj;) as the
maximal p¥; within cluster c. That is, p;; = max( p{f.), k € cluster c.
Finally, the hierarchical CoRS and CoRI were calculated by using
Equations 1 and 2, except for replacing pffj with pi;.

Modeling the association between behaviors and CoRS/CoRI. Following
the canonical correlation analysis (CCA) in Smith et al. (2015), we
included three steps to detect the multivariate brain-behavior associa-
tion. First, a set of confounders were regressed out from the brain and
behavior variables before running the CCA. These confounders were
(1) the version of the reconstruction software for the HCP data (two ver-
sions, coded as 1 and 0), (2) the average head motion across four runs of
rfMRI, (3) the total intracranial volume (TIV), and (4) age, agez, sex, age
x sex, and age” x sex. Before regressing the confounders, a rank-based
inverse Gaussian transformation was applied to the behavior variables
to guarantee Gaussianity (Smith et al., 2015). Second, given the high
dimension of the brain variables, we employed PCA to reduce the dimen-
sion of the brain variables (dimension, 59; the same as the number of
BMs; the proportion of variance explained, 44.7% for CoRS, 47.3% for
CoRI) to avoid overfitting the CCA model. The significance of the asso-
ciation between the brain canonical variable and the behavior canonical
variable was determined by using a permutation test based on the PALM
tool (Winkler et al., 2014), considering the family relationships within
the HCP data. After each permutation, the maximal canonical correla-
tion between canonical variables was recorded. The significance was
decided based on the distribution of these maximal coefficients to control
the family-wise error (FWE) rate for multiple comparisons. Finally, by
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using Pearson’s correlations, the significant brain and behavior canonical
variables were respectively related to the brain and behavior variables in
which the confounders had been regressed out. That is, each behavior
variable was correlated with the behavior canonical variable, and the
vertex-wise brain variables were correlated with the brain canonical
variable.

Transcriptomic and functional enrichment analyses. To identify the
transcriptional profiles underpinning the cortical distribution of CoRS
and CoRI, a Spearman correlation analysis between the region-wise
(HCP atlas) group-average transcriptional data (each gene in the
AHBA data) and the region-wise group-average CoRS/CoRI was con-
ducted. To consider the effect of spatial autocorrelation on the signifi-
cance of the correlation, we adopted BrainSMASH (Burt et al., 2020)
to conduct a permutation test to determine the corresponding p value.
Then, we used the Gene Ontology enRIchment anaLysis and
visuaLizAtion tool (GORILLA; Eden et al., 2009) to determine the func-
tional enrichments of a target gene list that was compared with the back-
ground full gene set (15,745 genes). To visualize the key gene ontology
(GO) terms related to the target gene list, we adopted the REVIGO
(Supek et al,, 2011) to project them into a two-dimensional space based
on the semantic similarity between them.

Results

Briefly, we overviewed the data and the analytic steps adopted to
generate the following results. Firstly, by using the rfMRI data of
1,003 young adults from the Human Connectome Project (HCP;
Van Essen et al., 2013), we identified the brain functional net-
works, that is, resting-state networks (RSNs), including their spa-
tial layouts and temporal activities, for each individual guided by
the combination of the group template optimized for the entire
sample and the estimation of individual variability (see more
details in Materials and Methods). We determined the number
of RSNs as 131 corresponding to the last local minimum, after
which the subcortical and cerebellar components started to
monotonically increase with the local minimum. Secondly, based
on the expression values of RSN at each cortical vertex, we cal-
culated the CoRS and CoRI to measure the extent of specific and
average expression of RSNs, outlining the topological signatures
of co-representation. Thirdly, we sought the neural basis under-
lying the quantified pattern of co-representation in the brain by
considering the myelin-related neuroanatomical measures and
transcriptional profiles. Finally, we evaluated the biological sign-
ificance of manifesting the observed co-representation pattern in
the brain by testing the brain-behavior covariation.

The topological signatures of co-representation are anchored
along a sensory-fugal axis of cytoarchitectural classes and
consistent across the hierarchical levels of functional network
Leveraging the individualized functional networks derived above,
we had the co-representation of networks at each vertex, from
which we calculated the CoRS and CoRI to measure the brain-
wide topological signatures of co-representation for each
individual.

In detail, the group-average cortical distribution of CoRS is
shown in Figure 2A. That is, these regions showing high CoRS
values were mainly found in the somatosensory and motor cor-
tex, primary auditory cortex, primary visual cortex, and retro-
splenial cortex. In parallel, these regions showing high CoRI
values were mainly found in the inferior/superior parietal cortex,
middle temporal gyrus, precuneus, and dorsolateral/dorsomedial
prefrontal cortex in terms of the group-average cortical distribu-
tion of CoRI (Fig. 2B). By projecting the cortical vertices to a two-
dimensional space spanned by the z scores of the group-average
CoRS and CoR], three kinds of apices were found to outline the
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Figure 2.  Cortical distributions of CoRS and CoRlI. 4, The group-average cortical map of CoRS. B, The group-average cortical map of CoRI. C, Scatterplot in the space spanned by the group-
average CoRS and group-average CoRlI. Each point represents a vertex. The z score of the group-average map is adopted for each axis. Histograms delineating the distribution of CoRS (green) and
CoRI (red) are shown on the boundary. D, Left, Colors from the scatterplot are presented on the cortical surface. Three exemplary vertices are labeled as gray spheres. Right, A spider plot to show
the co-representations of RSNs averaged across the subjects, respectively, for the three exemplary vertices. The colors correspond to their locations. E, The violin plot depicts the distribution of the
within-area average of CoRS (left) and CoRl (right) in each individual. Before calculating the within-area average in each participant, the individual CoRS and CoRI maps were z scored. Each point
within a violin plot represents a participant. Four colors shown on the brain surface indicate the cytoarchitectural classes (Mesulam, 2000; Paquola et al., 2019), that is, purple (heteromodal
association areas), khaki (unimodal association areas), red (idiotypic areas), and green (paralimbic areas). F, The density plot depicts the distribution of the within-network mean of CoRS (left)
and CoRI (right) in each individual. The networks (Ji et al., 2019) are visualized in different colors, abbreviated as ventral multimodal network (VMN), orbito-affective network (0AN), auditory
network (AudiN), somatomotor network (SMN), language network (LAN), posterior multimodal network (PMN), secondary visual network (SVN), primary visual network (PVN), cingulo-opercular
network (CON), dorsal attention network (DAN), default-mode network (DMN), and frontoparietal cognitive control network (FPN).
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scope of the distribution, which were distinguished by different
colors in Figure 2C. The three primary colors (red, green, and
blue) corresponded to three kinds of extreme locations within
the coordinate system spanned by CoRS and CoRI. The colors
of the other vertices were coded according to their Euclidian dis-
tances to the three loci. These coded colors were further mapped
back to the cortical surface to locate the corresponding brain
regions (Fig. 2D, left column). To show an intuitive example of
the distinct patterns of co-representation coded by the three pri-
mary colors, we randomly selected a vertex for each primary
color (Fig. 2D, left column). The group-average pattern of
co-representation of RSNs was distinct between each of the
selected vertices (Fig. 2D, right column). A specific pattern of
co-representation, that is, one RSN being preferentially
expressed, was shown in the vertex selected from the green
regions. In contrast, multiple RSNs were expressed in the vertex
selected from the red regions. All RSNs showed low representa-
tion in the location picked from the blue regions. We also found
the correspondence between and the brain space spanned by
CoRS and CoRI and the cytoarchitectural classes along a sen-
sory—fugal axis (Mesulam, 2000; Paquola et al, 2019).
Specifically, the brain regions with green color (high CoRS)
were mainly found in the idiotypic (primary) class, the brain
regions with red color (low CoRS and high CoRI) were mainly
found in the heteromodal class, and the brain regions with
blue color (low CoRI) were mainly found in the paralimbic
class (Fig. 2E). Significant differences in both CoRS and CoRI
were found between the cytoarchitectural classes across
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the subjects (two-tailed p<1x107'%

rank test).

Moreover, we examined the distribution of both CoRS and
CoRI across the predefined large-scale brain networks (Ji et al,
2019). By calculating the average value within each network of
each individual, we showed the populational distribution of both
CoRS and CoRI for each network (Fig. 2F). Regarding the popula-
tional average, the unimodal networks (Ito and Murray, 2022)
including the somatomotor network (SMN), the auditory network
(AudiN), and the primary visual network (PVN) were the top 3
based on their CoRS ranked in descending order, suggesting the
specificity of the co-representation in the brain regions predefined
in the unimodal networks. In contrast, the frontoparietal cognitive
control network (FPN) presented the highest CoRI and the lowest
CoRS, indicating that the brain regions predefined in the FPN were
involved in multiple RSNs. We also confirmed the significance of
pairwise difference between large-scale brain networks by using a
paired Wilcoxon signed rank test between each pair of networks
(two-tailed p< 1 x 107°).

Furthermore, we used a hierarchical clustering approach to
access other higher levels of the brain network organization.
That is, we clustered the fine-grained RSNs (dimension, 131 as
described above) into large-scale networks by taking the correla-
tion between their time series as similarity measures. We tested
three hierarchical levels of the clustering (4, 7, and 17 clusters).
We found that the cortical distributions of both CoRS and
CoRI showed high consistency across hierarchical levels
(Fig. 3A,B). Pearson’s correlation coefficient between group-
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The distributions of CoRS and CoRI across the hierarchical levels of brain network organization and the validation in the external dataset. 4, Each data point (blue, cyan, or purple) in

the violin map represents Pearson’s correlation coefficient for a participant between the different hierarchical levels (4, 7, and 17 networks, respectively) and the fine-grained level (131) regarding
the CoRS map (left) and the CoRI map (right). The white circle represents the median value and the gray vertical bar represents the range from the first quartile to the third quartile. B, The
group-average maps of CoRS (left) and CoRI (right) in different hierarchical levels. C, The group-average maps of CoRS (left) and CoRI (right) in the HCP-D dataset.
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average cortical maps of CoRS was above 0.90, and the correla-
tion between group-average cortical maps of CoRI was above
0.95. In addition, we tested the cortical distributions of both
CoRS and CoRI in another independent dataset, that is, the adult
data in the HCP-D dataset, by using the same computational
approaches (see more details in the part of Materials and
Methods above). With the same number of RSN, that is, 131,
we found that the group-average cortical map derived from the
HCP-D dataset was highly similar to the current one (r=0.95
for CoRI; r=0.88 for CoRS; Fig. 3C).

The co-representation of brain networks is underpinned by
the brain myeloarchitecture

To explore the biological underpinnings of the co-representation,
we started with the brain myeloarchitecture by using the
neuroanatomical measures and the transcriptional profiles,
respectively.

First, we used three kinds of neuroanatomical measures to
characterize the different aspects of cortical myelination, which
included the myelin content measured by the ratio between the
T1-weighted and T2-weighted MRI signals (Glasser and Van
Essen, 2011), the cortical NDI, and the ODI. Both NDI and
ODI were estimated from the neurite orientation dispersion
and density imaging (NODDI) model (Zhang et al, 2012;
Fukutomi et al., 2018). Specifically, we leveraged the group-
average cortical maps of the three measures based on the HCP
dataset in previous studies. By using Spearman correlation, we
found a positive association between the group-average cortical
maps of NDI and CoRS (r=0.59; BrainSMASH-based p = 0.001;
1,000 permutations; Fig. 44, left column) and a negative associa-
tion between the group-average cortical maps of NDI and CoRI
(r=-0.60; BrainSMASH-based p=0.001; 1,000 permutations;
Fig. 4A, right column). Here, the p values were determined by a
permutation test using BrainSMASH (Burt et al., 2020), which
generated 1,000 surrogate cortical maps that matched the spatial
autocorrelation with the original group-average CoRS and CoRI
maps. Moreover, similar associations were found between ODI
and CoRS (r=0.36; BrainSMASH-based p=0.001), and between
ODI and CoRI (r=-0.25 BrainSMASH-based p=0.001).
Finally, the cortical myelin content showed a positive association
with the group-average cortical map of CoRS (r=0.39;
BrainSMASH-based p =0.001). No significant association was
found between the myelin content and the CoRI map (r=—-0.04;
BrainSMASH-based p > 0.15; 1,000 permutations).

Second, we employed the preprocessed region-wise transcrip-
tional data (Arnatkeviciute et al., 2019) to establish the links
between the gene expression and the cortical distributions of
CoRS and CoRI. Specifically, by using Spearman correlation,
the group-average transcriptional data that aligns to the brain
regions in the left hemisphere of the HCP atlas was respectively
linked to the group-average CoRS and CoRI. BrainSMASH was
used to respectively generate 1,000,000 region-wise surrogate
maps of CoRS and CoRI for the permutation tests. Based on
the correlation coefficients, we ranked the included genes
(15,745 genes) in descending order. The top 10% of the genes
that also had statistical significance (BrainSMASH-based
p < 0.05, uncorrected) were selected to conduct a GO enrichment
analysis (591 and 1,209 genes for CoRS and CoRI, respectively).
For CoRS, we found that the selected gene list was enriched for
biological processes mainly including axon ensheathment, cell
migration, regulation of cell growth, developmental process,
and locomotion (p <0.001; Fig. 4B, left column). For CoRI, the
GO biological process enrichment included, for example,

Chuetal. o Spatial Coordination of Functional Brain Networks

potassium ion transport, response of glucose, and regulation of
glucose metabolic process (p <0.001; Fig. 4B, right column). In
addition, given the associations of cortical myeloarchitectures
with CoRS and CoRI, we tested the overlap between the selected
gene list and the myelination gene set (Liu et al., 2019) by using
the hypergeometric test (Hawrylycz et al., 2015). In detail, we
found that the myelination gene set overlapped with the CoRS
gene list (Fig. 4C, left; p < 1.5 x 1077%; 23 overlapped genes between
137 genes of the myelination gene set and 591 genes of the CoRS
gene list), suggesting the over-representation of myelination-
related genes in the CoRS gene list. To further test the specificity
of the overlap between the CoRS-related gene set and the myeli-
nation gene set, we used several categorical gene sets including
the brain-specific gene set, the synaptome gene set, and the oligo-
dendrocyte gene set, which were provided in a recent paper (Burt
et al.,, 2018). We confirmed that there was no significant overlap
between the CoRS-related gene set and the brain-specific/synap-
tome gene set (p>0.01 in the hypergeometric test). However,
there was a significant overlap between the CoRS-related gene
set and the oligodendrocyte gene set (p<1.2x 107" 133 over-
lapped genes between 1,769 genes in the myelination gene set
and 591 genes in the CoRS-related gene set). Considering the
important role of oligodendrocytes in myelination and axonal
support (Simons and Nave, 2015), this result was consistent
with the significant overlap between the CoRS-related gene set
and the myelination gene set. Moreover, no significant overlap
was found between the myelination and the CoRI gene sets
(Fig. 4C, right; p>0.48; 11 overlapped genes between 137 genes
of the myelination gene set and 1,209 genes of the CoRI gene list).

The co-representation of brain networks covaries with
individual behaviors

A further aim of this study was to understand the neurocognitive
relevance of manifesting the co-representation. To accomplish
this, we investigated the behavioral implications of the
co-representation.

Specifically, we used the CCA to study the covariation
between the pattern of co-representation (974 participants x
59,412 cortical vertices; CoRS or CoRI) and the corresponding
behavioral performances (974 participantsx59 BMs). We
included 59 BMs covering six categories including alertness, cog-
nition, emotion, motor, sensory, and personality. By using CoRS
as the brain variable, a pair of canonical variables were identified
through CCA (r=0.55; permutation-based p =0.001; FWE cor-
rected; 1,000 permutations; Fig. 5A). The correlation coeflicient
between the brain canonical variable and the CoRS values for
each vertex across participants (vector size 974 x 1) was deter-
mined by Pearson’s correlation (Fig. 5B). To further illustrate
the difference in the brain regions highlighted by the positive
and negative coefficients, we compared the average CoRS of
each participant within the regions showing positive associations
(p<0.01, uncorrected) and the average CoRS regarding negative
associations (p<0.01, uncorrected) by conducting a paired
Wilcoxon signed rank test. In detail, the regions showing positive
associations mainly focused on the unimodal regions, while the
regions showing negative associations were mainly found in
the transmodal regions (Fig. 6A). The taxonomy of unimodal
and transmodal regions was from previous studies (Ito et al,
2020a; Ito and Murray, 2022). We found that the average CoRS
was higher in the regions showing positive associations with the
brain canonical variable, compared with the average CoRI within
the regions showing negative associations (two-tailed p<1x
107'%; z value >20; paired Wilcoxon signed rank test; Fig. 6A).
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The cortical myeloarchitecture scaffolds the spatial distribution pattern of co-representation. A, Association between the cortical NDI and the CoRS (left)/CoRI (right). The x axes

correspond to the z scores of the two group-average indexes. The inset histogram shows the null distribution of the correlations derived from the BrainSMASH-based permutation. The red dashed
line shows the original Spearman correlation coefficient. B, Visualization of GO terms of biological processes in semantic space with respect to CoRS (left) and CoRlI (right). The circle size indicates
the frequency of the GO term in the database. C, The density plots depict the distribution of Spearman correlation coefficients between CoRS (left) and CoRI (right) and transcriptional profiles. The

black curve shows the estimated distribution of all genes included in the preprocessed

AHBA data. The green curve represents the myelination gene set. The red-shaded area represents the top

10% of genes that also have significant associations with the index (BrainSMASH-based p < 0.05). The inset bar plot depicts the p values of the hypergeometric test which tested the overlap

between the gene list of the red-shaded area and the myelination gene set.
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Figure 5.

The difference still existed when using more conservative p values
to define the corresponding regions (Fig. 6A). Similarly, the beha-
vior canonical variable was linked to each BM by using Pearson’s
correlation. A BM was considered to be a positive (negative)
measure if a high score acquired from the BM was indicative of
a positive (negative) personal trait, a high (low) behavioral per-
formance, or a high (low) quality of well-being. We found that
BMs having positive correlation coefficients above 0.2 with the
behavior canonical variable were positive measures, and BMs
showing negative correlation coefficients below —0.2 were nega-
tive measures (Fig. 5C).

When using CoRI as the brain variable, there was also a pair of
canonical variables that showed a significant correlation (r=0.57;
permutation-based p=0.001; FWE corrected; 1,000 permuta-
tions). The correlation coefficient between the brain canonical
variable and the CoRI values for each vertex across participants
(vector size 974 x 1) was also determined by Pearson’s correla-
tion. The CoRI-based results were similar to the CoRS-based
ones, in which a high correlation was found between the
CoRI-based brain canonical variable and the CoRS-based one
(r=0.73) and between the CoRI-based behavior canonical vari-
able and the CoRS-based one (r=0.90). Further, we found that
the average CoRI was higher within the regions showing positive
associations with the CoRI-based brain canonical variable (two-
tailed p<1x107'%; z value >20; paired Wilcoxon signed rank
test; Fig. 6B), compared with the average CoRI within the regions
showing negative associations. Similarly, most of the BMs that
had positive correlation coefficients above 0.2 with the
CoRI-based behavior canonical variable were positive measures,
except for one BM which was for the median reaction time of cor-
rect responses in a fluid intelligence test. The BMs showing
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negative correlation coefficients below —0.2 were all negative
measures.

Discussion

In this study, we leveraged the proposed approach of
co-representation to disclose the neural basis underlying the
well-observed phenomenon of spatial coordination among func-
tional brain networks. The results of our multimodal analysis
enabled new accounts of how the brain functional networks are
spatially coordinated and what the coordination is for. Our study
also provided a framework for extracting the system-wide coor-
dination of brain networks for each individual, highlighting the
potential in understanding individual brain patterns.

This work was built on the RSNs identified from the sponta-
neous BOLD signals in the human brain, which had proven effec-
tiveness in characterizing the canonical brain functional
networks (Smith et al., 2009; Gordon et al.,, 2017; Kong et al,,
2019; Uddin et al., 2019; Bijsterbosch et al., 2020, 2021). Recent
evidence suggests that RSNs reflect the baseline network state
to support the cognitive task information transfer, constituting
the intrinsic functional network architecture which is present
regardless of external stimuli (Cole et al., 2014; Krienen et al,,
2014; Ito et al., 2017; Gratton et al., 2018). Moreover, RSNs can
directly predict brain responses to various cognitive stimuli
(Tavor et al, 2016; Cohen et al, 2020), indicating their
contribution to neurocognitive computations. Therefore, the
co-representation of RSNs may depict an intrinsic latent space
in which the brain can further fine-tune the configuration of
the functional organization according to the external or internal
contexts of stimuli. Our claim here is consistent with the perspec-
tive that describes the brain’s functional organization as a
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Figure 6.

Comparison between the average CoRS (4)/CoRI (B) within the brain regions showing positive correlations (Pos) with the brain canonical variable and the average CoRS/CoRI within

the brain regions showing negative correlations (Neg). Each data point (blue or red) in the violin map represents the average value within the corresponding brain regions below (blue or red) of
each subject (974 subjects in total). The brain regions are defined according to the p values presented at the bottom right, which are used as thresholds to binarize the correlations with the brain
canonical variable. The white circle in the violin map represents the median value, and the gray vertical bar represents the range from the first quartile to the third quartile. The paired Wilcoxon
signed rank test was employed. * indicates a significant difference between Pos and Neg (p < 1x 107'%; 2> 20).

generative model which can generate and optimize top-down
processes triggered by bottom-up stimuli or internal signals
(Friston, 2005; Friston et al., 2017). Especially, the brain activity
at rest is posited to maintain and optimize the brain’s generative
models for keeping options of future interactions open by pre-
paring generic priors that can be characterized as the RSNs
(Pezzulo et al., 2021). Supporting this, the quantified pattern of
co-representation may facilitate our understanding of the spatial
coding used by the brain for the model optimization at rest.

By looking into the co-representation patterns in the brain
regions included by the predefined large-scale brain networks,
we found that the frontoparietal network showed the highest
CoRI averaged within the network and the unimodal networks
including the SMN, the auditory network, and the PVN were
the top 3 in the list of CoRS. This was reminiscent of the flexible
hub theory that can explain the high variability in functional con-
nectivity of the frontoparietal network both within itself and
between other networks across a wide variety of tasks (Cole et
al., 2013; Dixon et al., 2018; Cocuzza et al., 2020). The brain net-
works conjunctively represented within the spatial locations of
the frontoparietal network may be the preconfigured neural basis
supporting the flexible shift of connectivity pattern of the

frontoparietal network during the conduction of various cogni-
tive tasks. In contrast, by showing a specific pattern of
co-representation, the unimodal networks may respond to tasks
more locally to ensure the input-output efficiency for informa-
tion processing (Cole et al., 2013; Ito et al., 2020b). More interest-
ingly, the brain regions showing high CoRI values were especially
prevalent in regions maintaining the abstract representation of
tasks during the generation of the learned rules (Vaidya et al,
2021). In short, these findings suggested that the spatial arrange-
ment of the RSNs summarized by the co-representation might
contribute to facilitating the functional flexibility that can be
called for to abstract task representations for cognitive controls
(Vaidya and Badre, 2022).

As the co-representation of RSN is a functional representa-
tion of the brain network organization, we further dug into its
biological underpinnings by integrating data from other modal-
ities, which would help to delineate a more complete view of how
the brain arranges the spatial layouts of the brain networks. Our
results showed that higher CoRS (CoRI) was associated with
higher (lower) cortical neurite density and neurite orientation
dispersion, demonstrating that the cortical myeloarchitecture
may play a crucial role in shaping the co-representation.
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In particular, the cortical neurite density, reflecting the density of
myelinated axons and not of myelin itself (Fukutomi et al., 2018),
could explain the greatest variation in the spatial distribution of
both CoRS and CoRI. This suggests that the density of myelin-
ated axons may constrain how a cortical region is engaged in
RSNs. The neurobiological effect of myelination adds two addi-
tional perspectives to increase the understanding of the above
association. First, heavy myelination has been demonstrated to
be related to rapid axonal conduction (Hartline and Colman,
2007), which is inversely correlated with intracortical circuit
complexity (Glasser et al., 2014). Second, myelination has been
found to inhibit both new axonal growth and synapse formation
through molecular factors (Chen et al, 2000; McGee and
Strittmatter, 2003), a finding which relates to intracortical circuit
plasticity (Glasser et al., 2014). Therefore, myelination may shape
the pattern of co-representation by affecting both the complexity
and the plasticity of the intracortical circuit. Besides the under-
pinnings from the neuroanatomical factors of myeloarchitecture,
our results also demonstrated the genetic influences on the
co-representation by considering the cortical transcriptional
profiles. Interestingly, the gene list of CoRS was found to be
enriched for the axon ensheathment which is related to the pro-
cess of neuronal myelination (Sherman and Brophy, 2005). This
gene list was also over-represented in a predefined myelination
gene set. These findings again confirmed the effect of myelination
on shaping the co-representation, further indicating a pathway
from microcosmic gene expressions to macrocosmic functional
attributes via neuronal myelination processes.

Furthermore, our study was extended to understand
the biological meanings for the brain to manifest the
co-representation pattern. We demonstrated that the
co-representations of RSNs could predict behavioral perfor-
mance. By using the CCA, we identified highly similar patterns
of brain-behavior covariation when using either CoRS or
CoRI as the characterization of the co-representation. This
could be accounted for by the fact that CoRS and CoRI deline-
ate the two sides of the same principle of brain network orga-
nization. For the identified behavior canonical variable, it
resembled a compositive behavioral measure on which high-
scoring subjects might have better performance in multiple
domains of behaviors. Supporting this, we provided evidence
that the behavior canonical variable showed a positive-nega-
tive correlation pattern corresponding with the positive and
negative BMs. This pattern was consistent with the previous
study (Smith et al., 2015), indicating that the identified beha-
vior canonical variable tied to the co-representation of RSNs
could comprehensively reflect the behavioral performance of
subjects. When looking into the brain regions that strongly
correlated with the brain canonical variable, a positive-nega-
tive correlation pattern emerged to separate the brain regions
with the distinct pattern of the co-representation. If the
co-representation was characterized by using CoRS, positive
correlations were mainly found in brain regions with high
CoRS and negative correlations were mainly found in brain
regions with high CoRI. The same applied when using CoRI
as the measure. These indicated that the brain regions with
different patterns of co-representation played different roles
in the prediction of behavioral performance, probably reflect-
ing the functional separation between the unimodal cortex and
the transmodal cortex in supporting human behaviors
(Margulies and Smallwood, 2017). Considering the significant
association between the behavior canonical variable and the
brain canonical variable, these data suggested that the
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configuration of the co-representation of brain networks in
the human brain has implications for the general performance
of human behaviors.

In summary, by recapitulating the pattern of the
co-representation of brain networks, our work here advanced
our understanding of the orchestrated configuration of brain net-
works, especially its neural basis that existed in the brain mye-
loarchitecture and biological relevance found in brain functions
and human behaviors. Our findings induce suggestions that
may attract future work. First, it will be interesting to study the
changes in the co-representation of brain networks, especially
caused by psychiatric disorders, which may add new insights
into the system-wide reconfiguration of brain networks.
Second, given that localized ICA shows proven performance in
specific brain regions (Leech et al, 2012; Braga et al., 2013;
Igelstrom et al., 2015), it may be possible to extend the concepts
of the co-representation of functional networks within specific
brain areas. Finally, it will be desirable to further explore the
genetic underpinnings of the co-representation in an enormous
database, such as the UK Biobank (Miller et al., 2016; Bycroft
et al., 2018), in which in-depth genetic and neuroimaging data
are fully available.
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