001022605 001__ 1022605
001022605 005__ 20240712113255.0
001022605 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01571
001022605 037__ $$aFZJ-2024-01571
001022605 041__ $$aEnglish
001022605 1001_ $$0P:(DE-Juel1)180398$$aCHENG, TIANLIANG$$b0$$eCorresponding author$$ufzj
001022605 1112_ $$a19th Symposium on Fuel Cell and Battery Modeling and Experimental Validation$$cDuisburg$$d2023-03-21 - 2023-03-23$$gModVal$$wGermany
001022605 245__ $$aCFD modeling of a PEM water electrolyzer: relationship between flow regime number and performance
001022605 260__ $$c2023
001022605 3367_ $$033$$2EndNote$$aConference Paper
001022605 3367_ $$2DataCite$$aOther
001022605 3367_ $$2BibTeX$$aINPROCEEDINGS
001022605 3367_ $$2DRIVER$$aconferenceObject
001022605 3367_ $$2ORCID$$aLECTURE_SPEECH
001022605 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1707822902_12017$$xAfter Call
001022605 520__ $$aThe relationships between operating conditions, two-phase flow regime in the anode channel, and performance of a polymer electrolyte membrane water electrolyzer (PEMWE) is not well understood. These relationships are important for optimizing cell operation in view of power consumption and stability. To address this issue, a model for the interplay of the relative velocity between the two phases and the bubble diameter in the anode channel is developed. It accounts for the effect of current density on the bubble diameter using fitting to experimental data as input [1]. This model is coupled with the electro-chemical kinetics in catalyst layers to perform 3-D computational fluid dynamics (CFD) simulations of a PEMWE (Fig. 1) in the open-source platform OpenFOAM. The operating point is defined by the average area current density i, and the water stoichiometry λ. The two-phase flow regime is quantified by the normalized flow regime number, frn*, and the cell performance is characterized by the cell voltage, U. The model is compared to the experimental data of two-phase flow reported in Ref. [2]. Results show that the frn* provides a criterion to distinguish the three main flow regimes (bubbly, plug, and slug). Simulation results help furnish relationships between operating point, flow regime and cell performance. The best cell performance (lowest cell voltage) is found to occur at the highest water stoichiometry, λ = 1000, in simulations, where the bubbly flow regime prevails for current densities from 0.1 A/cm2 to 2.0 A/cm2. Slug flow with the highest value of frn* appears at 0.8 A/cm2 with the lowest water stoichiometry 100 (Fig. 2) due to the high oxygen volume fraction. Among other findings, it demonstrates that the water stoichiometry should be increased to decrease cell voltage and oxygen bubble sizes in the anode channel. This work provides important basic trends and limiting values for cell operation.
001022605 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001022605 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b1$$ufzj
001022605 7001_ $$0P:(DE-Juel1)178966$$aKadyk, Thomas$$b2$$ufzj
001022605 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b3$$ufzj
001022605 8564_ $$uhttps://juser.fz-juelich.de/record/1022605/files/Abstract.pdf$$yOpenAccess
001022605 8564_ $$uhttps://juser.fz-juelich.de/record/1022605/files/Abstract.gif?subformat=icon$$xicon$$yOpenAccess
001022605 8564_ $$uhttps://juser.fz-juelich.de/record/1022605/files/Abstract.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022605 8564_ $$uhttps://juser.fz-juelich.de/record/1022605/files/Abstract.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022605 8564_ $$uhttps://juser.fz-juelich.de/record/1022605/files/Abstract.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022605 909CO $$ooai:juser.fz-juelich.de:1022605$$pdriver$$pVDB$$popen_access$$popenaire
001022605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180398$$aForschungszentrum Jülich$$b0$$kFZJ
001022605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b1$$kFZJ
001022605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178966$$aForschungszentrum Jülich$$b2$$kFZJ
001022605 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
001022605 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001022605 9141_ $$y2023
001022605 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022605 920__ $$lyes
001022605 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001022605 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
001022605 9801_ $$aFullTexts
001022605 980__ $$aconf
001022605 980__ $$aVDB
001022605 980__ $$aUNRESTRICTED
001022605 980__ $$aI:(DE-Juel1)IEK-13-20190226
001022605 980__ $$aI:(DE-Juel1)IEK-14-20191129
001022605 981__ $$aI:(DE-Juel1)IET-3-20190226
001022605 981__ $$aI:(DE-Juel1)IET-4-20191129