001023009 001__ 1023009
001023009 005__ 20250203103341.0
001023009 037__ $$aFZJ-2024-01595
001023009 041__ $$aEnglish
001023009 1001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b0$$eCorresponding author$$ufzj
001023009 1112_ $$a9th International Discussion Meeting on Relaxation in Complex Systems$$cMakuhari Messe$$d2023-08-12 - 2023-08-18$$g9IDMRCS$$wJapan
001023009 245__ $$aDetermination of the cooperativity length in glass forming liquids and polymers
001023009 260__ $$c2023
001023009 3367_ $$033$$2EndNote$$aConference Paper
001023009 3367_ $$2DataCite$$aOther
001023009 3367_ $$2BibTeX$$aINPROCEEDINGS
001023009 3367_ $$2DRIVER$$aconferenceObject
001023009 3367_ $$2ORCID$$aLECTURE_SPEECH
001023009 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1710762109_7614$$xInvited
001023009 520__ $$aAlthough the idea of a ‘characteristic’ or ‘cooperativity’ length scale ξ related to the glass transition is now wide-spread, there is much less consensus on whether this length scale can be related to thermodynamic fluctuations and, if yes, whether one has to consider temperature fluctuations δT. The crucial experiment to this end has to compare values of ξ from ‘thermodynamic’ formulae to independent values from structural-dynamics experiments.An experiment with the aim of determining the cooperativity length ξ in glass forming materials was proposed some time ago by Ernst Donth [1]. The basic idea of this experiment is to assign a length scale to the AC-calorimetric relaxation time using the spatial resolution of quasielastic neutron scattering. The main problem is to find a range of relaxation times that is accessible by both methods. From the very beginning it is clear that only neutron-spin echo (NSE) is suited for this task. This raises the additional problem that incoherent scattering has to be measured. Therefore, significant progress in the performance of NSE as well as AC calorimetry was required to conduct this experiment.A first experiment of this kind was realised on a glass-forming liquid, propylene glycol (PG) [2]. The result was that agreement with the thermodynamic calculations was better if temperature fluctuations were accounted for. Nevertheless, in PG the difference between the two thermodynamic estimates is small and the dynamics of the methyl groups overlaps with the α relaxation. Therefore, a material with a higher ‘contrast’ between the alternatives was of interest and used in a second experiment, poly(ethylmethacrylate) (PEMA). In addition, neutron backscattering experiments showed that the methyl group dynamics is better separated in PEMA. Finally, the experiment benefitted from the upgrade of J-NSE with superconducting coils. The new results show a clear agreement with the thermodynamic calculation involving temperature fluctuations.[1] E. Donth, Eur. Phys. J. E 12, 11 (2003).[2] Y. Z. Chua, R. Zorn, O. Holderer, J. W. P. Schmelzer, C. Schick, E. Donth, J. Chem. Phys. 146, 104501 (2017).
001023009 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001023009 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001023009 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001023009 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x3
001023009 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001023009 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001023009 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x0
001023009 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x1
001023009 7001_ $$0P:(DE-HGF)0$$aChua, Yeong-Zen$$b1
001023009 7001_ $$0P:(DE-HGF)0$$aSchmelzer, Jürn W. P.$$b2
001023009 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b3$$ufzj
001023009 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b4$$ufzj
001023009 7001_ $$0P:(DE-HGF)0$$aSchick, Christoph$$b5
001023009 909CO $$ooai:juser.fz-juelich.de:1023009$$pVDB
001023009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b0$$kFZJ
001023009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b3$$kFZJ
001023009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b4$$kFZJ
001023009 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001023009 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001023009 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001023009 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
001023009 9141_ $$y2024
001023009 920__ $$lyes
001023009 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001023009 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
001023009 980__ $$aconf
001023009 980__ $$aVDB
001023009 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001023009 980__ $$aI:(DE-Juel1)IBI-8-20200312
001023009 980__ $$aUNRESTRICTED
001023009 981__ $$aI:(DE-Juel1)JCNS-1-20110106