001023017 001__ 1023017
001023017 005__ 20250204113803.0
001023017 0247_ $$2doi$$a10.1021/acs.jpclett.3c03295
001023017 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01600
001023017 0247_ $$2pmid$$a38349906
001023017 0247_ $$2WOS$$aWOS:001167244700001
001023017 037__ $$aFZJ-2024-01600
001023017 082__ $$a530
001023017 1001_ $$0P:(DE-Juel1)191033$$aBruch, Nils$$b0
001023017 245__ $$aIncorporating Electrolyte Correlation Effects into Variational Models of Electrochemical Interfaces
001023017 260__ $$aWashington, DC$$bACS$$c2024
001023017 3367_ $$2DRIVER$$aarticle
001023017 3367_ $$2DataCite$$aOutput Types/Journal article
001023017 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714583031_3667
001023017 3367_ $$2BibTeX$$aARTICLE
001023017 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023017 3367_ $$00$$2EndNote$$aJournal Article
001023017 520__ $$aWe propose a way for obtaining a classical free energy density functional for electrolytes based on a first-principle many-body partition function. Via a one-loop expansion, we include coulombic correlations beyond the conventional mean-field approximation. To examine electrochemical interfaces, we integrate the electrolyte free energy functional into a hybrid quantum-classical model. This scheme self-consistently couples electronic, ionic, and solvent degrees of freedom and incorporates electrolyte correlation effects. The derived free energy functional causes a correlation-induced enhancement in interfacial counterion density and leads to an overall increase in capacitance. This effect is partially compensated by a reduction of the dielectric permittivity of interfacial water. At larger surface charge densities, ion crowding at the interface stifles these correlation effects. While scientifically intriguing already at planar interfaces, we anticipate these correlation effects to play an essential role for electrolytes in nanoconfinement.
001023017 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001023017 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023017 7001_ $$0P:(DE-Juel1)194968$$aBinninger, Tobias$$b1
001023017 7001_ $$0P:(DE-Juel1)192568$$aHuang, Jun$$b2
001023017 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b3$$eCorresponding author
001023017 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.3c03295$$gp. 2015 - 2022$$n7$$p2015 - 2022$$tThe journal of physical chemistry letters$$v15$$x1948-7185$$y2024
001023017 8564_ $$uhttps://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.pdf$$yOpenAccess
001023017 8564_ $$uhttps://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.gif?subformat=icon$$xicon$$yOpenAccess
001023017 8564_ $$uhttps://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023017 8564_ $$uhttps://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023017 8564_ $$uhttps://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023017 8767_ $$d2024-02-14$$eHybrid-OA$$jPublish and Read
001023017 909CO $$ooai:juser.fz-juelich.de:1023017$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001023017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191033$$aForschungszentrum Jülich$$b0$$kFZJ
001023017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194968$$aForschungszentrum Jülich$$b1$$kFZJ
001023017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192568$$aForschungszentrum Jülich$$b2$$kFZJ
001023017 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b3$$kFZJ
001023017 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001023017 9141_ $$y2024
001023017 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023017 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001023017 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023017 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001023017 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023017 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001023017 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2022$$d2025-01-07
001023017 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001023017 9801_ $$aAPC
001023017 9801_ $$aFullTexts
001023017 980__ $$ajournal
001023017 980__ $$aVDB
001023017 980__ $$aUNRESTRICTED
001023017 980__ $$aI:(DE-Juel1)IEK-13-20190226
001023017 980__ $$aAPC
001023017 981__ $$aI:(DE-Juel1)IET-3-20190226