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ARTICLE INFO ABSTRACT
Keywords: Purpose: Multiple-quantum-filtered (MQF) sodium magnetic resonance imaging (MRI), such as enhanced single-
Multiple quantum filtering quantum and triple-quantum-filtered imaging of ?*Na (eSISTINA), enables images to be weighted towards

Sodium metabolic imaging

restricted sodium, a promising biomarker in clinical practice, but often suffers from clinically infeasible acqui-
Enhanced SISTINA

Compressed sensing sition times and low image quality. This study aims to mitigate the above limitation by implementing a novel

Acquisition time reduction eSISTINA sequence at 7 T with the application of compressed sensing (CS) to accelerate eSISTINA acquisitions

Ultrahigh field without a noticeable loss of information.
Methods: A novel eSISTINA sequence with a 3D spiral-based sampling scheme was implemented at 7 T for the
application of CS. Fully sampled datasets were obtained from one phantom and ten healthy subjects, and were
then retrospectively undersampled by various undersampling factors. CS undersampled reconstructions were
compared to fully sampled and undersampled nonuniform fast Fourier transform (NUFFT) reconstructions.
Reconstruction performance was evaluated based on structural similarity (SSIM), signal-to-noise ratio (SNR),
weightings towards total and compartmental sodium, and in vivo quantitative estimates.
Results: CS-based phantom and in vivo images have less noise and better structural delineation while maintaining
the weightings towards total, non-restricted (predominantly extracellular), and restricted (primarily intracel-
lular) sodium. CS generally outperforms NUFFT with a higher SNR and a better SSIM, except for the SSIM in TQ
brain images, which is likely due to substantial noise contamination. CS enables in vivo quantitative estimates
with <15% errors at an undersampling factor of up to two.
Conclusions: Successful implementation of an eSISTINA sequence with an incoherent sampling scheme at 7 T was
demonstrated. CS can accelerate eSISTINA by up to twofold at 7 T with reduced noise levels compared to NUFFT,
while maintaining major structural information, reasonable weightings towards total and compartmental so-
dium, and relatively reliable in vivo quantification. The associated reduction in acquisition time has the potential
to facilitate the clinical applicability of MQF sodium MRI.

1. Introduction Disruption of cell membrane integrity or energy metabolism dysfunction
leads to an increased intracellular sodium concentration, whereas the

Sodium (?*Na) plays an essential role in cellular metabolic processes extracellular sodium concentration remains largely unchanged due to
through the regulation of the sodium-potassium pump, which maintains tissue perfusion. Therefore, the elevated intracellular sodium caused by
a large sodium concentration gradient between the intracellular (typi- abnormal sodium ion homeostasis is often considered a sensitive early
cally: 10-15 mmol/l) and extracellular (typically: 140-150 mmol/1) indicator of various pathological conditions [1], such as brain tumors
compartments across the cell membrane at the expense of energy [1,2]. [3,4] and multiple sclerosis [5]. Hence, the selective detection of
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intracellular sodium content is of great interest. However, conventional
sodium magnetic resonance imaging (MRI) with a single radiofrequency
(RF) pulse only allows the detection of total tissue sodium content.
Various advanced approaches have been proposed to monitor the
intracellular sodium ions selectively via sodium MRI. For example,
chemical shift reagents have been used to create a resonance frequency
offset for extracellular sodium ions [6], and an inversion recovery
technique has been developed for the suppression of sodium signals
from an aqueous environment [7].

In addition, multiple-quantum-filtered (MQF) sodium nuclear mag-
netic resonance (NMR) spectroscopy has been used to monitor intra-
cellular sodium content in animal experiments using the chemical shift
reagent technique as a reference [8, 9]. These studies showed that the
triple-quantum-filtered (TQ-filtered) sodium signal primarily originated
from intracellular sodium ions, whereas the changes in extracellular
sodium contents had little effect on the TQ-filtered signal. In light of this,
this work applied a multiple-quantum filtering technique for intracel-
lular sodium-weighted imaging, which is proposed as a noninvasive tool
to investigate the in vivo pathological processes at the cellular level
[3,4,10-12]. In recent years, MQF sodium MRI has benefited from the
increasing availability of ultrahigh field (7 T or higher) systems, which
offer an improved signal-to-noise ratio (SNR), making MQF sodium MRI
an enticing technique for clinical practice. However, compared with
hydrogen (*H) MRI, which is widely used in clinical routine, MQF so-
dium MRI still suffers from the interrelated issues of relatively low image
quality and long acquisition times (often exceeding 10 min), hampering
its clinical applicability. These issues emerge from the fact that sodium
MRI has a relatively low NMR sensitivity of approximately 9.2%
compared to hydrogen [13]. The electric quadrupolar nature of the so-
dium nucleus results in a biexponential transversal relaxation in bio-
logical tissues, with a fast component T, (0.5-5 ms) contributing about
60% of the sodium NMR signal and a slow component T,, (15-30 ms)
corresponding to approximately 40% of the signal [1]. Moreover, high-
order sodium coherences suffer from a poor signal intensity, roughly one
order of magnitude lower than the signal intensity obtained from con-
ventional total sodium-weighted imaging [14].

Fortunately, compressed sensing (CS) has been shown to accelerate
sodium imaging and improve sodium image quality in various studies
[15]. CS aids the accurate reconstruction of certain signals or images
from raw data sampled below the Nyquist sampling criterion [16,17].
There are three fundamental requirements for applying CS to sodium
MRI [18]. First, the image must have a sparse representation in a
transform domain so that the noise can be separated and removed from
the desired image content. Sodium MRI already fulfills this requirement
since sodium images are intrinsically sparse in some transform domains
[18,19]. Second, the undersampled k-space data should have low
coherence such that the generated artifacts exhibit a noise-like pattern in
the image domain and even more so in a properly chosen transform
domain. Due to the fast bi-exponential relaxation behavior, sodium MRI
typically employs a non-Cartesian ultrashort echo time (UTE) sampling
scheme with low coherence (e.g., a radial or spiral acquisition scheme)
[15], which is preferred for the application of CS. Third, the desired
image should be reconstructed by a nonlinear iterative approach that
enforces both the image sparsity in the transform domain and the con-
sistency of the reconstructed image with the measured k-space data.
Since Madelin et al. first demonstrated the applicability of CS in sodium
MRI in 2012 [19], CS has been used to improve sodium MRI in various
anatomical regions, including the human knee [19], brain [20-28],
breast [29,30], skeletal muscle [31,32], and human torso [33]. In
particular, Blunck et al. investigated the bias in CS-derived estimates in
sodium brain MRI and found that CS can accelerate conventional sodium
MRI by up to fourfold with good image quality and high total sodium
concentration (TSC) quantification accuracy [24]. Furthermore, the
clinical potential of CS has been preliminarily demonstrated in multiple
pathological conditions, such as ischemic stroke [21,26], multiple
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sclerosis [22], and brain tumors [27,34]. However, these studies have
only accelerated conventional total sodium-weighted imaging. Intra-
cellular sodium-weighted MQF images are less compressible than total
sodium-weighted images due to low image resolution and high noise
contamination; therefore, the performance of CS on MQF sodium images
is of great interest. To the best of the authors' knowledge, the acceler-
ation of intracellular sodium-weighted MQF sodium MRI by CS, which
might potentially be of greater clinical significance, has not yet been
investigated.

In this proof-of-concept study, the feasibility of applying CS to
accelerate enhanced simultaneous single-quantum (SQ) and TQ-filtered
imaging of 2>Na (eSISTINA) [35,36] at 7 T was first investigated. Here, it
is assumed that SQ coherences originate from both nonrestricted
(mainly extracellular) and restricted (mainly intracellular) environ-
ments, whereas TQ coherences develop primarily in a restricted, pre-
dominantly intracellular environment only [11]. A novel eSISTINA
sequence was developed and implemented using Fermat Looped
ORthogonally Encoded Trajectories (FLORET) [37] k-space trajectories
with attractive properties, including high sampling efficiency, great SNR
retainment for short-T, species, and excellent potential of incoherent
undersampling. Fully sampled eSISTINA datasets were obtained from a
phantom and ten healthy subjects and retrospectively undersampled
over a range of undersampling factors (USFs). Finally, the CS-based
images were compared with fully sampled and undersampled images
reconstructed by nonuniform fast Fourier transform (NUFFT) to eval-
uate the effect of CS on image quality, weightings towards total and
compartmental sodium, and in vivo quantitative estimates.

2. Material and methods
2.1. eSISTINA sequence implementation

A variation of the eSISTINA sequence was developed and imple-
mented for MQF sodium MRI. As shown in Fig. 1, the novel feature of
this sequence is that it employs two sets of 3D spiral-based FLORET k-
space trajectories to introduce high incoherence to UTE, SQ, and TQ raw
data for CS reconstruction. The eSISTINA sequence has a repetition time
(TR) of 150 ms and a total acquisition time of 11 min 10 s. The multiple-
quantum filter consists of three hard RF pulses separated by a prepara-
tion time of 7 = 9.5 ms and an evolution time of § = 60 us. The flip angles
are ; = az = az = 90° and the RF phases are ¢, ¢,, and @5 with the
application of an appropriate 12-step phase cycling scheme [36]. The
five-echo UTE readout train that takes place during the preparation time
provides information on total sodium content and the fast transversal
relaxation time, T,;. Following the third RF pulse, the six-echo MQF
readout train delivers information on multiple quantum coherences and
the slow transversal relaxation time, T,. After each readout, the
gradient moment is completely rewound to avoid the interference of
residual magnetization on high-order coherences. In addition, a spoiler
gradient is applied to dephase residual transversal magnetization after
the last MQF readout. In this study, two sets of fully sampled FLORET k-
space trajectories were calculated and implemented for UTE and MQF
readout trains, given user-defined parameters of maximum slew rate,
maximum gradient strength, field-of-view (FOV), resolution, and the
number of projections. The UTE FLORET (maximum slew rate = 90 mT/
m/ms; maximum gradient strength = 75 mT/m) is composed of 4462
center-out projections with 1 average, whereas the MQF FLORET
(maximum slew rate = 5.4 mT/m/ms; maximum gradient strength = 75
mT/m) consists of 372 center-out projections with 12 averages. UTE
images were acquired at TEyrg = {0.56, 2.41, 4.26, 6.11, 7.96} ms with
an 840 Hz/pixel bandwidth, covering an FOV of 320 mm cubic with a
nominal resolution of 5 mm cubic and a full width at half maximum
(FWHM) of 6.8 mm cubic. SQ and TQ raw data were sampled at TEygr
= {10.50, 19.63, 28.76, 37.89, 47.02, 56.15} ms using a readout
bandwidth of 130 Hz/pixel, with an FOV of 320 mm cubic, a nominal
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Fig. 1. Diagram of a novel eSISTINA sequence.

MQF readouts

This sequence employs two sets of 3D spiral-based FLORET k-space trajectories for the UTE and MQF readout modules (red curves). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

resolution of 10 mm cubic, and an FWHM of 13.7 mm cubic.

2.2. Data acquisition

All MRI images were acquired on a Siemens Terra 7 T MRI scanner
(SIEMENS Healthineers, Erlangen, Germany) capable of 80 mT/m
maximum gradient amplitude and 200 mT/m/ms maximum slew rate. A
single-channel dual-tuned 'H/2*Na transmit-receive birdcage RF coil
(RAPID Biomedical, Germany) was used for hydrogen anatomical im-
aging and sodium imaging. A cylindrical phantom with a height of 14 cm
and a radius of 9 cm (Fig. 3a) was scanned for the validation of the novel
eSISTINA sequence. This phantom consists of six compartments with
various sodium chloride concentrations of {50, 100, 140} mmol/I and
agarose weights per deionized water volume of {0%, 2%, 6%} for the
simulation of nonrestricted (compartments 1-2) and variously restricted
(compartments 3-6) environments. Brain imaging of ten healthy sub-
jects (3 females, 29.6 + 3.8 years of age) was performed to investigate
the in vivo performance of the eSISTINA sequence. All human imaging
was conducted with the approval of the ethics committee of RWTH
Aachen University, Aachen, Germany. Written informed consent was
obtained from all subjects before their inclusion in the study. In addi-
tion, By shimming, By/B; field mapping, and hydrogen anatomical im-
aging were performed during the measurement. The entire
measurement took approximately 30 min in the First-Level controlled
operating mode.

By shimming was based on a vendor-supplied 3D shimming routine
at the hydrogen Larmor frequency to reduce static field inhomogeneity.
The “standard” shimming procedure was performed twice, and the
“advanced” shimming procedure was performed three times for opti-
mization. By and B, field maps with a resolution of 10 mm cubic were
acquired for the correction of SQ/TQ images and were gridded to 5 mm
cubic for the correction of UTE images in postprocessing.

Hydrogen anatomical information was obtained to aid in white
matter (WM) segmentation of sodium images by utilizing the MP2RAGE
[38] sequence with the following parameters: inversion times of 1 s and
3.25; 4° flip angles; TR of about 8.2 s; TE of 1.91 ms; GRAPPA factor = 1;
FOV =240 x 224 x 144 mm?; resolution = 2 mm cubic; and acquisition
time of about 15 min.

2.3. Data undersampling

Prior to image reconstruction, retrospective undersampling was
performed on the fully sampled UTE, SQ, and TQ k-space data by
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pseudorandomly skipping a subset of projections with five USFs = {1.5,
2, 3, 4, 5}, leading to reduced numbers of UTE projections = {2976,
2232,1488, 1116, 888}, decreased numbers of MQF projections = {248,
186, 124, 93, 74}, and accelerated acquisition times = {447, 335, 224,
168, 134} s. Fig. 2b and i show the FLORET k-spaces of UTE and MQF
readouts with original Nyquist sampling, respectively. The variously
undersampled UTE and MQF k-spaces are displayed in Fig. 2c-g and j-n,
respectively. The pseudorandom undersampling was performed offline
in MATLAB 2019a (Mathworks, Natick, MA, USA). This undersampling
scheme generates noise-like k-space undersampling artifacts, which are
added incoherently to the sparse representation of the FLORET raw data
with low coherence. Thus, the described undersampling combined with
the FLORET sampling scheme is highly desirable for the application of
CS.

2.4. Image reconstruction

The CS reconstruction used in this work adopts a conventional
nonlinear iterative algorithm proposed by Lustig et al. [18], formulated
as a constrained optimization problem:

?:argmxin{Hy—FuxHi+7x1|\¥’x\|1 +MTV(x) }, 1)
where || o ||; and || e ||, denote the [;- and l,-norms, respectively; x is the
iteratively generated image; X is the final reconstructed image; y is the
acquired k-space data; F, is the undersampled NUFFT operator; ¥ is the
sparsity transform operator such that ¥x becomes sparse; TV is the finite
difference operator to promote image restoration [39]; and 4; and A, are
the weighting factors of the transform sparsity and finite difference,
respectively. The first term ensures data consistency. The second and
third terms enforce image sparsity in the transform and finite-difference
domains, respectively.

In this study, the minimization problem in Eq. (1) was solved over
320 iterations using a nonlinear conjugate gradient method [18] with a
wavelet transform operator, which was shown to outperform the
Discrete Cosine Transform operator and Identity operator [24]. The
optimal weighting factors, 1; and 1,, can be different for each data type
(UTE, SQ, and TQ); additionally, they might vary slightly across sub-
jects, USFs, and echoes due to differences in raw data. Hence, an
empirical search for the best regularization parameters was performed
for each reconstruction over a range of weightings: 4; = [0, 1.0] with a
step size of 0.1; for UTE and SQ, 4, = {0, 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; and for TQ, A2 = {0, 0.0001, 0.0005,
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Subplots (a) and (h) present the first (red), middle (green), and last (blue) projections of UTE and MQF FLORET, respectively. Fully sampled (b) UTE and (i) MQF
FLORET k-spaces were retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5 in a pseudorandom way: undersampled (c-g) UTE and (j-n) MQF k-spaces. TA =
total acquisition time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
The weighting factors that provided the highest Structural Similarity
(SSIM) [40] were chosen.

In addition to CS, NUFFT provided in the Michigan Image Recon-
struction Toolbox [41] was used to reconstruct fully sampled and
undersampled UTE, SQ, and TQ data. The fully sampled NUFFT-based
images were used as references. Each reconstructed image was indi-
vidually scaled by its maximum intensity to ensure an intensity range
from O to 1 for image comparison. All reconstructions were performed
offline in MATLAB 2019a.

2.5. Image segmentation

Hydrogen WM was extracted from MP2RAGE images and then
binarily masked and linearly coregistered to the UTE reference images to
obtain UTE WM. The UTE WM mask was then linearly coregistered to SQ
reference images to get WM for SQ/TQ data. Hydrogen WM segmenta-
tion and linear coregistration were performed in FSL software (FMRIB,
Oxford, UK) using the FAST and FLIRT functions, respectively. The
resulting partial volume effect maps were thresholded at 0.9, 0.8, and
0.7 to obtain binary WM masks for MP2RAGE, UTE, and SQ/TQ images,
respectively. Image segmentation and quantitative analysis (SNR, TSC,
Ty, and T,.) were performed on WM only, as gray matter suffers from
severe partial volume effects, especially in low-resolution SQ and TQ
images. The brain region was manually masked with caution to exclude
the skull. The phantom masks were manually determined, and care was
taken to avoid partial volume effects.

2.6. Image evaluation

In principle, a reconstruction method should be evaluated based on
the diagnostic value of the resulting image; nevertheless, this is not
feasible at the proof-of-concept stage. Therefore, the undermentioned
methods were used as proxies.

SSIM and SNR were used to evaluate the overall image quality. SSIM
measured the structural degradation of an undersampled reconstruction
by comparing the test image with the reference image via a pixel-wise
correlation. SSIM was calculated over a certain region of support (e.g.,
the whole brain region) to avoid the influence of background noise.
SSIM values range from O to 1, where a larger SSIM indicates a closer
similarity between the test image and the reference image. To obtain an
unbiased SNR, the signal amplitude was corrected in all reconstructions
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to reduce the effect of noise. The corrected signal, O, is given as

\/ ‘mean(signal)z—am,ise2 , wWhere 6,0ise 1S the standard deviation of the

noise distribution assumed to follow a Rayleigh distribution. Noise re-
gions were manually selected from the image background, and caution
was taken to exclude the object of interest (e.g., a phantom or a human
head). The SNR provided by © e was determined in a specific re-
gion of interest (e.g., WM).

Contrasts of total, nonrestricted, and restricted sodium were exam-
ined in all reconstructions to investigate whether eSISTINA images
maintain the weightings towards total and compartmental sodium after
CS-based acceleration. According to the quantum mechanics of eSIS-
TINA [35], UTE images show contrast proportional to total sodium
content, independent of the mobility of sodium ions. In addition, since
the restricted sodium is more prone to evolve from SQ to TQ coherences
under the excitation of a multiple-quantum filter, SQ images are
weighted towards nonrestricted sodium; in contrast, TQ images are
weighted towards restricted sodium [10].

To investigate the effect of CS on in vivo quantitative analysis, the
TSC, Ty, and T, of WM in all undersampled reconstructions were
calculated and compared with those values obtained from reference
reconstructions. The TSC value in WM, TSCwy, was determined using
TSCwm = TSCrer ® SNRwy/SNRf, where the SNR of the vitreous humor
of the eyes was taken as a reference, SNR,., with a fixed TSC, TSC,f =
135 mmol/l [42]. SNR,; was calculated based on the top five high-
intensity voxels in the vitreous humor to reduce partial volume ef-
fects. Both SNRwy and SNR,.; were obtained from the first-echo UTE
images to alleviate signal loss due to relaxation. T,; of WM was deter-
mined by UTE fitting given by [36]:

TE, TE,
SNRyg = Ae exp( TI;]TE> +Be exp< T*UTE> s

—1
Onoise

(2)

2f 2 fix

where A and B are constants; SNRyrtg and TEyrg are UTE SNR of WM and
UTE echo times, respectively. The first term accounts for the fast
relaxation component (T;f from restricted sodium). The second term
represents the slow relaxation component (T, from restricted sodium
and T; from nonrestricted sodium) and is assumed to have a fixed long
relaxation time T, ;. = 35 ms. The T,, value of WM was obtained from
the TQ echo fitting function given by [4]:
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. 3

TE TE
SNRpg =Ce {exp( Th:lQF> —exp< TJE?QF) } . {exp( lTJZ T> —exp( i;‘r >
2f 2 2f 2

where C is a constant; SNRtq and TEyqr are the TQ SNR of WM and MQF Descriptive statistics for all quantitative parameters, including TSC, Ty,

echo times, respectively; 1 = 1 ms is the RF pulse duration; 7 = 9.5 ms is and T,,, were provided as means and standard deviations for all subjects.
the preparation time, and & = 60 us is the evaluation time. Ty is the Given that quantitative estimates are relatively sensitive to image in-
value obtained from UTE fitting in Eq. (2). If UTE fitting was unreliable tensity elevation caused by excessive smoothing in CS reconstructions,
(i.e., the fitting error was >50%) or if the fit did not converge, Eq. (3) in vivo quantitative performance was assessed by calculating the mean
was used to obtain both T, and Ty values [4]. In the UTE and TQ fittings difference in quantitative values between test and reference re-
described above, the unbiased SNR serves as a proxy of the signal from constructions across all subjects. For example, the mean difference (in

the region of interest.

Statistical analysis was used to evaluate the in vivo performance of
CS. The paired right-tailed Student's t-test was applied to compare SNR
and SSIM between NUFFT and CS undersampled reconstructions over
ten healthy subjects. The Wilcoxon right-tailed rank sum test was used if
SNR or SSIM did not follow a normal distribution and was checked by
the Lilliefors test. A p-value of 0.05 or less was considered significant.

(a) (b)

10
%) in TSC from CS is given byA = o [(Tsccs,i;gscm)/ TSC'd], where
TSCcs; and TSC,s are the TSC values of the ith subject obtained from CS
and reference reconstructions, respectively. The quantification of the
test reconstruction was considered relatively reliable if the absolute
mean differences of all quantitative estimates were <15%.

Reference USF=1.5 USF=2 USF=3 USF=4 USF=5

4 B

‘N

50 mmol/L
0%

1

Phantom with 6 compartments

Fig. 3. Schematic and first-echo eSISTINA images of a phantom.

(a) The schematic shows sodium chloride concentration in mmol/l and agarose weight/deionized water volume in percent (e.g, 2% indicates 2 g of agarose powder
per 100 ml deionized water). (b) Comparison of NUFFT and CS across all USFs on the first-echo eSISTINA images of the phantom. The UTE (5 mm cubic), SQ (10 mm
cubic), and TQ (10 mm cubic) datasets were acquired at the Nyquist sampling rate and retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5. The original,
fully sampled images reconstructed by NUFFT were set as references.
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3. Results
3.1. Phantom results

The NUFFT and CS reconstructions of the first-echo UTE, SQ, and TQ
data from a sodium agarose phantom (Fig. 3a) with various USFs are
displayed in Fig. 3b. In the case of undersampling, CS generally out-
performs NUFFT, with noticeably reduced noise levels and overall better
preservation of structural information present in the reference images.
Moreover, the CS-based SQ/TQ images, as well as CS-based UTE images
with high USFs, even show less noise than the corresponding reference
images. However, more blurring appears in CS-based images with
increasing USF, which may lead to a loss of contrast and information.

As shown in Fig. 3b, for all NUFFT and CS reconstructions, UTE
images exhibit contrast proportional to the sodium concentration,
regardless of the agarose percentage, whereas SQ and TQ images present
contrast dependent on the agarose concentration: at the same sodium
molarity, SQ signal intensities decrease, and yet TQ signal intensities
increase with increasing agarose concentration. Moreover, the signal of
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sodium liquids simulating a nonrestricted environment is well sup-
pressed in TQ images. These observations are in good agreement with
the quantum mechanics of eSISTINA [35].

Fig. 4 shows the quantitative image quality measures of CS and
NUFFT reconstructions of the phantom data across all USFs and all
echoes. In various cases of undersampling, CS yields better SSIM and
SNR than NUFFT, except that 4 CS-based SQ/TQ SSIM values are
marginally lower than those from NUFFT but still show relatively high
values of about 0.9. Moreover, the CS-based SNR values are even higher
than the reference values in most reconstructions, especially for SQ and
TQ images. In CS, SNR shows an upward trend while SSIM decreases
slightly with increasing USF, possibly due to the blurring and loss of
small structures caused by strong undersampling.

3.2. In vivo results
NUFFT and CS reconstructions of a representative in vivo dataset with

multiple USFs are shown in Fig. 5. From visual inspection, CS generally
leads to remarkedly reduced noise levels and better delineation of brain

(b) 50 — . : : .

40t .
o 301 1
Z
n 20+ i

10t .

0 l 1 1 | | IIII.I_
1 2 3 4 5
b ——
NUFFTCS
30 B | | Reference |7
B N USF=15
e 20} B W oUusF2 ||
< B W USF=3
» [ USF=4
10t USF=5 |

Echo

Fig. 4. Image quality measures of NUFFT and CS reconstructions of phantom (Fig. 3a) data across all USFs and all echoes.

The NUFFT-based full sampling was used as a reference (green). The values obtained from NUFFT (blue) and CS (red) reconstructions with different USFs are
represented by different colour gradients. SSIM was calculated over the whole phantom for (a) UTE (5 mm cubic) and (c) SQ (10 mm cubic) images, and over the
phantom compartments 3-6 for (e) TQ (10 mm cubic) images. SNR was calculated over the phantom compartment 6 for (b) UTE, (d) SQ, and (f) TQ images. The
legend in subplot d applies to all subplots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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USF=3 USF=4 USF=5

Fig. 5. Comparison of NUFFT and CS across all USFs on the first-echo in vivo images.
The UTE (5 mm cubic), SQ (10 mm cubic), and TQ (10 mm cubic) datasets were acquired from the brain of a 32-year-old healthy female subject at the Nyquist
sampling rate and retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5. The original, fully sampled images reconstructed by NUFFT are presented

as references.

structures compared to NUFFT at various USFs. It should be noted that
the information contained in the TQ reference image may be biased by
strong noise contamination, which makes it difficult to compare the
undersampled TQ image with the TQ reference image. In the case of high
USFs (e.g., USF = 4 or 5), even large structures like the gray matter are
hardly visible in NUFFT due to substantial noise, whereas the gray
matter can be reliably delimited in CS. However, a loss of contrast and
information caused by excessive smoothing can be observed in CS re-
constructions with high undersampling.

As shown in Fig. 5, the CSF region with high sodium concentration
appears bright in all UTE and SQ images, as expected. Conversely, the
signal from the CSF area with a nonrestricted environment is well sup-
pressed in all TQ images. Additionally, the brain tissues composed of
gray matter and WM, which provide both nonrestricted and restricted
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environments, yield higher signal intensity than the CSF area in all TQ
images despite the relatively low tissue sodium concentration [1]. The
weightings towards total, nonrestricted, and restricted sodium in all in
vivo images align with those in the phantom images in Fig. 3b.

The reconstructions of data from other echoes and other volunteers
yield similar results. Fig. 6 shows the evaluation of the reconstruction
performance of NUFFT and CS over a group of ten healthy subjects
across all USFs and all echoes using SSIM and SNR. CS yields signifi-
cantly (p < 0.05) higher SNR values than NUFFT in UTE, SQ, and TQ
images for all echoes and all USFs (Fig. 6b, d, f). Moreover, the CS-based
SNR values are better than the reference values in most cases. With
increasing USF, the NUFFT-based SNR is reduced due to undersampling,
whereas the CS-based SNR rises because CS tends to excessive smoothing
at high USFs. As shown in Fig. 6a and c, in both UTE and SQ images, CS
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Fig. 6. Image quality measures of NUFFT and CS reconstructions of in vivo data from ten healthy subjects across all USFs and all echoes.

SSIM and SNR values were obtained from reference (green), NUFFT undersampled (blue), and CS undersampled (red) reconstructions. The means and standard
deviations of SSIM and SNR over ten healthy subjects are represented by dots and whiskers, respectively. SSIM (a, c, €) and SNR (b, d, f) were calculated over the
whole brain region and the white matter area, respectively. An asterisk (*) is marked when the CS-based SSIM or SNR values are significantly (p < 0.05) higher than
those from NUFFT. The legend in subplot d applies to all subplots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Summary statistics of quantitative analysis of ten healthy subjects.
Reference USF =1.5 USF =2 USF =3 USF =4 USF =5
T (ms) NUFFT 4.8 +0.3 4.5 + 0.4 (—5%) 4.3 + 0.4 (—9%) 4.3 + 0.5 (—8%) 4.1 + 0.5 (—14%) 4.1 + 0.5 (—14%)
2r (8 Cs - 4.3 + 1.4 (—10%) 4.1 + 1.2 (—13%) 3.2 £ 1.1 (—34%) 3.3+ 1.7 (—32%) 3.3+ 1.6 (—31%)
T (ms) NUFFT 29.9 + 2.0 36.6 £+ 2.9 (22%) 38.7 £+ 2.8 (30%) 43.4 £ 3.9 (46%) 43.5 £ 3.6 (46%) 44.9 + 4.1 (51%)
2 (08 Cs - 28.6 + 3.3 (—4%) 27.8 + 3.3 (—7%) 28.9 + 2.3 (—2%) 28.3 + 3.0 (—3%) 28.3 + 3.6 (—5%)
TSC (mmol/1) NUFFT 419 +1.2 42.0 + 1.2 (0%) 41.6 + 1.8 (—1%) 42.1 + 1.1 1%) 41.4 + 1.8 (—1%) 41.0 + 2.3 (—2%)
Cs - 41.9 + 1.2 (0%) 43.7 + 1.7 (4%) 47.9 + 0.8 (15%) 52.8 + 1.5 (26%) 54.1 + 2.3 (29%)

Abbreviations: USF = undersampling factor, NUFFT = non-uniform fast Fourier transform, CS = compressed sensing, T,; = fast transversal relaxation time, T, = slow
transversal relaxation time, TSC = total sodium concentration.

The quantitative parameters, T,, T, and TSC, obtained from NUFFT-based full sampling, are presented as reference values. The quantitative values obtained from
NUFFT and CS undersampled reconstructions by factors of 1.5, 2, 3, 4, and 5 are compared to the reference values. Values in the form of mean =+ std. represent the
means and standard deviations of quantitative parameters over ten healthy subjects. The mean difference between the quantitative estimate and the reference value
across ten subjects is given in parentheses. Differences that fall within the range from —15% to 15% are marked in bold.
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leads to SSIM values significantly better than NUFFT, except for a few
cases where CS-based SSIM is only comparable to NUFFT-based SSIM
but still has a sufficiently high value of about 0.9. However, in TQ im-
ages, most CS reconstructions result in similar or even worse SSIM
values compared with NUFFT (Fig. 6e), although from visual inspection,
CS generally outperforms NUFFT with better preservation of the primary
structural information present in the TQ reference image for all USFs
(Fig. 5). As USF increases, both NUFFT-based and CS-based SSIM values
decrease, but CS-based SSIM drops more slowly than NUFFT-based SSIM
due to the denoising nature of CS.

Table 1 presents the summary statistics for the quantitative analysis
on a group of ten healthy subjects. The reference values for WM obtained
from original, fully sampled NUFFT-based reconstructions are Ty, = 4.8

+ 0.3 ms, T, = 29.9 + 2.0 ms, and TSC = 41.9 £ 1.2 mmol/l. These

values are comparable to the literature values with T, from 0.5 ms to 5
ms, T;S from 15 ms to 30 ms, and TSC of 43 & 3 mmol/1 [5,43]. NUFFT
yields <15% bias in both T,; and TSC for all USFs, whereas quantifica-
tion of T, and TSC using CS is only reliable at low USFs. However, it is
remarkable that for all USFs, the CS-based T, values compare well with
the reference values, whereas the NUFFT-based T,, values are over-
estimated with a mean difference larger than 15%.

4. Discussion

Motivated by the fact that MQF sodium MRI suffers from clinically
infeasible measurement times and low image quality, this work imple-
ments a novel eSISTINA sequence with an incoherent sampling scheme
at 7 T and demonstrates that CS can be applied to reconstruct moder-
ately undersampled eSISTINA data without noticeably degrading the
performance of the sequence.

In this study, CS has three advantages that are especially desirable for
accelerated eSISTINA. First, CS can improve the image quality of
undersampled eSISTINA images with substantial noise suppression and
sound structural information recovery. In various cases of under-
sampling, the visual performance of CS was superior to NUFFT, with
notably reduced noise levels in both phantom (Fig. 3) and in vivo (Fig. 5)
measurements, which was confirmed by SNR measures (Figs. 4b, d, f and
6b, d, f). Most CS undersampled reconstructions yielded SNR values
even higher than fully sampled reference reconstructions. The consid-
erable noise reduction facilitated the delineation of structures in CS,
whereas these structures were difficult to distinguish from the sub-
stantial noise contamination in NUFFT. Consequently, CS generally
outperformed NUFFT in the SSIM measures of phantom (Fig. 4a, c, €)
and in vivo (Fig. 6a, c) images, with the exception of TQ brain images
(Fig. 6e). One possible explanation for the inferior in vivo performance of
TQ SSIM is that severe noise contamination in TQ brain images may
produce biased estimates of SSIM and, in particular, here the CS-based
SSIM was underestimated by comparing greatly denoised CS-based
brain images with heavily noisy TQ reference brain images.

The second advantage of CS is that it had little effect on the
weightings towards total, nonrestricted, and restricted sodium in eSIS-
TINA images from both phantom (Fig. 3) and in vivo (Fig. 5) studies. This
suggests that with CS-based acceleration, the eSISTINA sequence can
still maintain its performance in yielding a weighting towards total so-
dium in UTE images, a weighting towards nonrestricted sodium in SQ
images, and a weighting towards restricted sodium in TQ images.

Third, CS enabled relatively reliable quantification of Ty, T, and
TSC values with a USF of up to two, whereas NUFFT failed in the
quantification due to the overestimation of T;S value (Table 1). A
possible explanation for the overestimated T, is that the SNR values
taken from undersampled NUFFT-based TQ images were too low for the
signal decay fitting routine to obtain accurate Ts,.

Despite the above advantages, there are three practical limitations
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and considerations when applying CS to MQF sodium MRI. First, there is
no gold standard for SNR and structure preservation measures in
nonlinear iterative reconstructions, making it difficult to compare
different algorithms. Common approaches for determining SNR depend
on a spatially uniform noise distribution with known statistical char-
acteristics; for example, the method used in this study requires a Ray-
leigh noise distribution. Unlike NUFFT-based noise profiles adequately
described by the Rayleigh distribution, the spatial and statistical prop-
erties of noise from iterative reconstructions remain unclear. This may
bias the estimation of SNR values (Figs. 4b, d, f and 6b, d, f) and other
relative parameters, such as Ty, T,, and TSC in CS reconstructions
(Table 1). SSIM was chosen to measure structural information degra-
dation but is only meaningful if the ground truth image is known. Given
that ground truth images were unavailable in this study, reference im-
ages were used as an alternative for computing SSIM. This may lead to
unreliable SSIM values if the reference image does not agree well with
the ground truth, such as the TQ reference brain image being heavily
contaminated by noise (Figs. 5, 6e). The structural degradation could be
better analyzed by computing the local point spread function [44].
However, it cannot be directly applied to non-Cartesian FLORET data
since the image reconstruction involves gridding interpolation.

The second limitation is the long reconstruction times and difficult
parameterization of CS. CS requires complex iterative algorithms to
solve nonlinear optimization problems, leading to long processing times
(usually hours). In addition, manual tuning of regularization parameters
was performed for each reconstruction task in this study, which resulted
in a heavy computational burden. It was observed that CS exhibited poor
generalization across data types but good generalization across subjects,
echoes, and USFs. Thus, the regularization parameters, 4; and A5, can be
kept constant for different subjects, echoes, and USFs to reduce the
computational burden. Moreover, the reconstruction performance of CS
is sensitive to parameter tuning. The rigid manual tuning using empir-
ical search in this study may have led to image quality dispersion among
different subjects and echoes, which may have biased the TSC estimate
and echo fitting for T, and T,,. Fortunately, deep learning has been
shown to enable fast and accurate reconstruction of undersampled k-
space data without manual parameter tuning and could be applied to
mitigate this limitation in future work [26,45].

Third, the noise level decreased with increasing USF (Figs. 4b, d, f
and 6b, d, f), while the errors in image contrast (Figs. 4a, c, e and 6a, c, €)
and quantitative analysis (Table 1) increased. Hence, consideration must
be given to selecting an appropriate USF that balances these two factors.
In this work, CS only enabled a USF of up to two for eSISTINA, with
reduced noise levels and proper maintenance of visual information and
quantitative estimates. The achievable USF in non-hydrogen MRI is
limited compared with hydrogen MRI, which is mainly due to the
intense noise caused by the relatively low NMR sensitivity of non-hy-
drogen nuclei. Previous studies have shown that the performance of
conventional CS in sodium MRI can be further improved by incorpo-
rating hydrogen anatomical constraints [20,22,27] or sparsity in learned
dictionaries [23,25,28]. Furthermore, supplying prior knowledge about
temporal signal evolution led to a more accurate estimation of trans-
versal relaxation times for CS in hydrogen MRI [46]. The above con-
straints could be added to the CS cost function shown in Eq. (1), which
may enable a higher USF for MQF sodium MRI.

In the future, the clinical potential of CS-based accelerated MQF
sodium MRI may be investigated in several areas. For example, given
that the resolution of conventional eSISTINA images is commonly
sacrificed for shorter measurement times and higher SNR, applying CS to
achieve higher-resolution MQF sodium imaging while maintaining an
acceptable protocol duration has the potential to yield an important
clinical impact.

Since the intracellular sodium concentration, volume fraction, and
molar fraction can further provide valuable information for diagnosis or
medical treatment [3,4,36], it is worth investigating the effect of CS on
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intracellular sodium quantification.

Furthermore, CS is not limited to sodium MRI but can also be applied
to other nuclei with even lower NMR sensitivity, such as potassium
(39K), chlorine (35C1), and oxygen (170) [471.

5. Conclusions

Driven by the interest in a reduction in acquisition time for MQF
sodium MRI, this proof-of-concept study establishes a novel eSISTINA
sequence with an incoherent sampling scheme at 7 T and demonstrates
the feasibility of applying CS to accelerate eSISTINA acquisitions of the
human brain. The experimental results on retrospectively undersampled
k-space data show that CS can accelerate eSISTINA by up to a factor of
two at 7 T with higher SNR and better structural preservation than
NUFFT, while maintaining relatively reliable in vivo quantification and
proper weightings towards total and compartmental sodium. The
feasibility of sequence implementation and the reduction in acquisition
times have the potential to facilitate the applicability of MQF sodium
MRI in clinical practice.
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