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A B S T R A C T   

Purpose: Multiple-quantum-filtered (MQF) sodium magnetic resonance imaging (MRI), such as enhanced single- 
quantum and triple-quantum-filtered imaging of 23Na (eSISTINA), enables images to be weighted towards 
restricted sodium, a promising biomarker in clinical practice, but often suffers from clinically infeasible acqui
sition times and low image quality. This study aims to mitigate the above limitation by implementing a novel 
eSISTINA sequence at 7 T with the application of compressed sensing (CS) to accelerate eSISTINA acquisitions 
without a noticeable loss of information. 
Methods: A novel eSISTINA sequence with a 3D spiral-based sampling scheme was implemented at 7 T for the 
application of CS. Fully sampled datasets were obtained from one phantom and ten healthy subjects, and were 
then retrospectively undersampled by various undersampling factors. CS undersampled reconstructions were 
compared to fully sampled and undersampled nonuniform fast Fourier transform (NUFFT) reconstructions. 
Reconstruction performance was evaluated based on structural similarity (SSIM), signal-to-noise ratio (SNR), 
weightings towards total and compartmental sodium, and in vivo quantitative estimates. 
Results: CS-based phantom and in vivo images have less noise and better structural delineation while maintaining 
the weightings towards total, non-restricted (predominantly extracellular), and restricted (primarily intracel
lular) sodium. CS generally outperforms NUFFT with a higher SNR and a better SSIM, except for the SSIM in TQ 
brain images, which is likely due to substantial noise contamination. CS enables in vivo quantitative estimates 
with <15% errors at an undersampling factor of up to two. 
Conclusions: Successful implementation of an eSISTINA sequence with an incoherent sampling scheme at 7 T was 
demonstrated. CS can accelerate eSISTINA by up to twofold at 7 T with reduced noise levels compared to NUFFT, 
while maintaining major structural information, reasonable weightings towards total and compartmental so
dium, and relatively reliable in vivo quantification. The associated reduction in acquisition time has the potential 
to facilitate the clinical applicability of MQF sodium MRI.   

1. Introduction 

Sodium (23Na) plays an essential role in cellular metabolic processes 
through the regulation of the sodium‑potassium pump, which maintains 
a large sodium concentration gradient between the intracellular (typi
cally: 10–15 mmol/l) and extracellular (typically: 140–150 mmol/l) 
compartments across the cell membrane at the expense of energy [1,2]. 

Disruption of cell membrane integrity or energy metabolism dysfunction 
leads to an increased intracellular sodium concentration, whereas the 
extracellular sodium concentration remains largely unchanged due to 
tissue perfusion. Therefore, the elevated intracellular sodium caused by 
abnormal sodium ion homeostasis is often considered a sensitive early 
indicator of various pathological conditions [1], such as brain tumors 
[3,4] and multiple sclerosis [5]. Hence, the selective detection of 
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intracellular sodium content is of great interest. However, conventional 
sodium magnetic resonance imaging (MRI) with a single radiofrequency 
(RF) pulse only allows the detection of total tissue sodium content. 
Various advanced approaches have been proposed to monitor the 
intracellular sodium ions selectively via sodium MRI. For example, 
chemical shift reagents have been used to create a resonance frequency 
offset for extracellular sodium ions [6], and an inversion recovery 
technique has been developed for the suppression of sodium signals 
from an aqueous environment [7]. 

In addition, multiple-quantum-filtered (MQF) sodium nuclear mag
netic resonance (NMR) spectroscopy has been used to monitor intra
cellular sodium content in animal experiments using the chemical shift 
reagent technique as a reference [8, 9]. These studies showed that the 
triple-quantum-filtered (TQ-filtered) sodium signal primarily originated 
from intracellular sodium ions, whereas the changes in extracellular 
sodium contents had little effect on the TQ-filtered signal. In light of this, 
this work applied a multiple-quantum filtering technique for intracel
lular sodium-weighted imaging, which is proposed as a noninvasive tool 
to investigate the in vivo pathological processes at the cellular level 
[3,4,10–12]. In recent years, MQF sodium MRI has benefited from the 
increasing availability of ultrahigh field (7 T or higher) systems, which 
offer an improved signal-to-noise ratio (SNR), making MQF sodium MRI 
an enticing technique for clinical practice. However, compared with 
hydrogen (1H) MRI, which is widely used in clinical routine, MQF so
dium MRI still suffers from the interrelated issues of relatively low image 
quality and long acquisition times (often exceeding 10 min), hampering 
its clinical applicability. These issues emerge from the fact that sodium 
MRI has a relatively low NMR sensitivity of approximately 9.2% 
compared to hydrogen [13]. The electric quadrupolar nature of the so
dium nucleus results in a biexponential transversal relaxation in bio
logical tissues, with a fast component T*

2f (0.5–5 ms) contributing about 
60% of the sodium NMR signal and a slow component T*

2s (15–30 ms) 
corresponding to approximately 40% of the signal [1]. Moreover, high- 
order sodium coherences suffer from a poor signal intensity, roughly one 
order of magnitude lower than the signal intensity obtained from con
ventional total sodium-weighted imaging [14]. 

Fortunately, compressed sensing (CS) has been shown to accelerate 
sodium imaging and improve sodium image quality in various studies 
[15]. CS aids the accurate reconstruction of certain signals or images 
from raw data sampled below the Nyquist sampling criterion [16,17]. 
There are three fundamental requirements for applying CS to sodium 
MRI [18]. First, the image must have a sparse representation in a 
transform domain so that the noise can be separated and removed from 
the desired image content. Sodium MRI already fulfills this requirement 
since sodium images are intrinsically sparse in some transform domains 
[18,19]. Second, the undersampled k-space data should have low 
coherence such that the generated artifacts exhibit a noise-like pattern in 
the image domain and even more so in a properly chosen transform 
domain. Due to the fast bi-exponential relaxation behavior, sodium MRI 
typically employs a non-Cartesian ultrashort echo time (UTE) sampling 
scheme with low coherence (e.g., a radial or spiral acquisition scheme) 
[15], which is preferred for the application of CS. Third, the desired 
image should be reconstructed by a nonlinear iterative approach that 
enforces both the image sparsity in the transform domain and the con
sistency of the reconstructed image with the measured k-space data. 
Since Madelin et al. first demonstrated the applicability of CS in sodium 
MRI in 2012 [19], CS has been used to improve sodium MRI in various 
anatomical regions, including the human knee [19], brain [20–28], 
breast [29,30], skeletal muscle [31,32], and human torso [33]. In 
particular, Blunck et al. investigated the bias in CS-derived estimates in 
sodium brain MRI and found that CS can accelerate conventional sodium 
MRI by up to fourfold with good image quality and high total sodium 
concentration (TSC) quantification accuracy [24]. Furthermore, the 
clinical potential of CS has been preliminarily demonstrated in multiple 
pathological conditions, such as ischemic stroke [21,26], multiple 

sclerosis [22], and brain tumors [27,34]. However, these studies have 
only accelerated conventional total sodium-weighted imaging. Intra
cellular sodium-weighted MQF images are less compressible than total 
sodium-weighted images due to low image resolution and high noise 
contamination; therefore, the performance of CS on MQF sodium images 
is of great interest. To the best of the authors' knowledge, the acceler
ation of intracellular sodium-weighted MQF sodium MRI by CS, which 
might potentially be of greater clinical significance, has not yet been 
investigated. 

In this proof-of-concept study, the feasibility of applying CS to 
accelerate enhanced simultaneous single-quantum (SQ) and TQ-filtered 
imaging of 23Na (eSISTINA) [35,36] at 7 T was first investigated. Here, it 
is assumed that SQ coherences originate from both nonrestricted 
(mainly extracellular) and restricted (mainly intracellular) environ
ments, whereas TQ coherences develop primarily in a restricted, pre
dominantly intracellular environment only [11]. A novel eSISTINA 
sequence was developed and implemented using Fermat Looped 
ORthogonally Encoded Trajectories (FLORET) [37] k-space trajectories 
with attractive properties, including high sampling efficiency, great SNR 
retainment for short-T*

2 species, and excellent potential of incoherent 
undersampling. Fully sampled eSISTINA datasets were obtained from a 
phantom and ten healthy subjects and retrospectively undersampled 
over a range of undersampling factors (USFs). Finally, the CS-based 
images were compared with fully sampled and undersampled images 
reconstructed by nonuniform fast Fourier transform (NUFFT) to eval
uate the effect of CS on image quality, weightings towards total and 
compartmental sodium, and in vivo quantitative estimates. 

2. Material and methods 

2.1. eSISTINA sequence implementation 

A variation of the eSISTINA sequence was developed and imple
mented for MQF sodium MRI. As shown in Fig. 1, the novel feature of 
this sequence is that it employs two sets of 3D spiral-based FLORET k- 
space trajectories to introduce high incoherence to UTE, SQ, and TQ raw 
data for CS reconstruction. The eSISTINA sequence has a repetition time 
(TR) of 150 ms and a total acquisition time of 11 min 10 s. The multiple- 
quantum filter consists of three hard RF pulses separated by a prepara
tion time of τ = 9.5 ms and an evolution time of δ = 60 us. The flip angles 
are α1 = α2 = α3 = 90◦ and the RF phases are φ1, φ2, and φ3 with the 
application of an appropriate 12-step phase cycling scheme [36]. The 
five-echo UTE readout train that takes place during the preparation time 
provides information on total sodium content and the fast transversal 
relaxation time, T*

2f . Following the third RF pulse, the six-echo MQF 
readout train delivers information on multiple quantum coherences and 
the slow transversal relaxation time, T*

2s. After each readout, the 
gradient moment is completely rewound to avoid the interference of 
residual magnetization on high-order coherences. In addition, a spoiler 
gradient is applied to dephase residual transversal magnetization after 
the last MQF readout. In this study, two sets of fully sampled FLORET k- 
space trajectories were calculated and implemented for UTE and MQF 
readout trains, given user-defined parameters of maximum slew rate, 
maximum gradient strength, field-of-view (FOV), resolution, and the 
number of projections. The UTE FLORET (maximum slew rate = 90 mT/ 
m/ms; maximum gradient strength = 75 mT/m) is composed of 4462 
center-out projections with 1 average, whereas the MQF FLORET 
(maximum slew rate = 5.4 mT/m/ms; maximum gradient strength = 75 
mT/m) consists of 372 center-out projections with 12 averages. UTE 
images were acquired at TEUTE = {0.56, 2.41, 4.26, 6.11, 7.96} ms with 
an 840 Hz/pixel bandwidth, covering an FOV of 320 mm cubic with a 
nominal resolution of 5 mm cubic and a full width at half maximum 
(FWHM) of 6.8 mm cubic. SQ and TQ raw data were sampled at TEMQF 
= {10.50, 19.63, 28.76, 37.89, 47.02, 56.15} ms using a readout 
bandwidth of 130 Hz/pixel, with an FOV of 320 mm cubic, a nominal 
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resolution of 10 mm cubic, and an FWHM of 13.7 mm cubic. 

2.2. Data acquisition 

All MRI images were acquired on a Siemens Terra 7 T MRI scanner 
(SIEMENS Healthineers, Erlangen, Germany) capable of 80 mT/m 
maximum gradient amplitude and 200 mT/m/ms maximum slew rate. A 
single-channel dual-tuned 1H/23Na transmit-receive birdcage RF coil 
(RAPID Biomedical, Germany) was used for hydrogen anatomical im
aging and sodium imaging. A cylindrical phantom with a height of 14 cm 
and a radius of 9 cm (Fig. 3a) was scanned for the validation of the novel 
eSISTINA sequence. This phantom consists of six compartments with 
various sodium chloride concentrations of {50, 100, 140} mmol/l and 
agarose weights per deionized water volume of {0%, 2%, 6%} for the 
simulation of nonrestricted (compartments 1–2) and variously restricted 
(compartments 3–6) environments. Brain imaging of ten healthy sub
jects (3 females, 29.6 ± 3.8 years of age) was performed to investigate 
the in vivo performance of the eSISTINA sequence. All human imaging 
was conducted with the approval of the ethics committee of RWTH 
Aachen University, Aachen, Germany. Written informed consent was 
obtained from all subjects before their inclusion in the study. In addi
tion, B0 shimming, B0/B1 field mapping, and hydrogen anatomical im
aging were performed during the measurement. The entire 
measurement took approximately 30 min in the First-Level controlled 
operating mode. 

B0 shimming was based on a vendor-supplied 3D shimming routine 
at the hydrogen Larmor frequency to reduce static field inhomogeneity. 
The “standard” shimming procedure was performed twice, and the 
“advanced” shimming procedure was performed three times for opti
mization. B0 and B1 field maps with a resolution of 10 mm cubic were 
acquired for the correction of SQ/TQ images and were gridded to 5 mm 
cubic for the correction of UTE images in postprocessing. 

Hydrogen anatomical information was obtained to aid in white 
matter (WM) segmentation of sodium images by utilizing the MP2RAGE 
[38] sequence with the following parameters: inversion times of 1 s and 
3.2 s; 4◦ flip angles; TR of about 8.2 s; TE of 1.91 ms; GRAPPA factor = 1; 
FOV = 240 × 224 × 144 mm3; resolution = 2 mm cubic; and acquisition 
time of about 15 min. 

2.3. Data undersampling 

Prior to image reconstruction, retrospective undersampling was 
performed on the fully sampled UTE, SQ, and TQ k-space data by 

pseudorandomly skipping a subset of projections with five USFs = {1.5, 
2, 3, 4, 5}, leading to reduced numbers of UTE projections = {2976, 
2232, 1488, 1116, 888}, decreased numbers of MQF projections = {248, 
186, 124, 93, 74}, and accelerated acquisition times = {447, 335, 224, 
168, 134} s. Fig. 2b and i show the FLORET k-spaces of UTE and MQF 
readouts with original Nyquist sampling, respectively. The variously 
undersampled UTE and MQF k-spaces are displayed in Fig. 2c-g and j-n, 
respectively. The pseudorandom undersampling was performed offline 
in MATLAB 2019a (Mathworks, Natick, MA, USA). This undersampling 
scheme generates noise-like k-space undersampling artifacts, which are 
added incoherently to the sparse representation of the FLORET raw data 
with low coherence. Thus, the described undersampling combined with 
the FLORET sampling scheme is highly desirable for the application of 
CS. 

2.4. Image reconstruction 

The CS reconstruction used in this work adopts a conventional 
nonlinear iterative algorithm proposed by Lustig et al. [18], formulated 
as a constrained optimization problem: 

x̂ = argmin
x

{
‖y–Fux‖2

2 + λ1‖Ψx‖1 + λ2TV(x)
}
, (1)  

where ‖ • ‖1 and ‖ • ‖2 denote the l1- and l2-norms, respectively; x is the 
iteratively generated image; x̂ is the final reconstructed image; y is the 
acquired k-space data; Fu is the undersampled NUFFT operator; Ψ is the 
sparsity transform operator such that Ψx becomes sparse; TV is the finite 
difference operator to promote image restoration [39]; and λ1 and λ2 are 
the weighting factors of the transform sparsity and finite difference, 
respectively. The first term ensures data consistency. The second and 
third terms enforce image sparsity in the transform and finite-difference 
domains, respectively. 

In this study, the minimization problem in Eq. (1) was solved over 
320 iterations using a nonlinear conjugate gradient method [18] with a 
wavelet transform operator, which was shown to outperform the 
Discrete Cosine Transform operator and Identity operator [24]. The 
optimal weighting factors, λ1 and λ2, can be different for each data type 
(UTE, SQ, and TQ); additionally, they might vary slightly across sub
jects, USFs, and echoes due to differences in raw data. Hence, an 
empirical search for the best regularization parameters was performed 
for each reconstruction over a range of weightings: λ1 = [0, 1.0] with a 
step size of 0.1; for UTE and SQ, λ2 = {0, 0.0001, 0.0005, 0.001, 0.005, 
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; and for TQ, λ2 = {0, 0.0001, 0.0005, 

Fig. 1. Diagram of a novel eSISTINA sequence. 
This sequence employs two sets of 3D spiral-based FLORET k-space trajectories for the UTE and MQF readout modules (red curves). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. 
The weighting factors that provided the highest Structural Similarity 
(SSIM) [40] were chosen. 

In addition to CS, NUFFT provided in the Michigan Image Recon
struction Toolbox [41] was used to reconstruct fully sampled and 
undersampled UTE, SQ, and TQ data. The fully sampled NUFFT-based 
images were used as references. Each reconstructed image was indi
vidually scaled by its maximum intensity to ensure an intensity range 
from 0 to 1 for image comparison. All reconstructions were performed 
offline in MATLAB 2019a. 

2.5. Image segmentation 

Hydrogen WM was extracted from MP2RAGE images and then 
binarily masked and linearly coregistered to the UTE reference images to 
obtain UTE WM. The UTE WM mask was then linearly coregistered to SQ 
reference images to get WM for SQ/TQ data. Hydrogen WM segmenta
tion and linear coregistration were performed in FSL software (FMRIB, 
Oxford, UK) using the FAST and FLIRT functions, respectively. The 
resulting partial volume effect maps were thresholded at 0.9, 0.8, and 
0.7 to obtain binary WM masks for MP2RAGE, UTE, and SQ/TQ images, 
respectively. Image segmentation and quantitative analysis (SNR, TSC, 
T*

2f , and T*
2s) were performed on WM only, as gray matter suffers from 

severe partial volume effects, especially in low-resolution SQ and TQ 
images. The brain region was manually masked with caution to exclude 
the skull. The phantom masks were manually determined, and care was 
taken to avoid partial volume effects. 

2.6. Image evaluation 

In principle, a reconstruction method should be evaluated based on 
the diagnostic value of the resulting image; nevertheless, this is not 
feasible at the proof-of-concept stage. Therefore, the undermentioned 
methods were used as proxies. 

SSIM and SNR were used to evaluate the overall image quality. SSIM 
measured the structural degradation of an undersampled reconstruction 
by comparing the test image with the reference image via a pixel-wise 
correlation. SSIM was calculated over a certain region of support (e.g., 
the whole brain region) to avoid the influence of background noise. 
SSIM values range from 0 to 1, where a larger SSIM indicates a closer 
similarity between the test image and the reference image. To obtain an 
unbiased SNR, the signal amplitude was corrected in all reconstructions 

to reduce the effect of noise. The corrected signal, Θ, is given as 
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒mean(signal)2–σnoise2

⃒
⃒
⃒

√

, where σnoise is the standard deviation of the 

noise distribution assumed to follow a Rayleigh distribution. Noise re
gions were manually selected from the image background, and caution 
was taken to exclude the object of interest (e.g., a phantom or a human 
head). The SNR provided by Θ • σ− 1

noise was determined in a specific re
gion of interest (e.g., WM). 

Contrasts of total, nonrestricted, and restricted sodium were exam
ined in all reconstructions to investigate whether eSISTINA images 
maintain the weightings towards total and compartmental sodium after 
CS-based acceleration. According to the quantum mechanics of eSIS
TINA [35], UTE images show contrast proportional to total sodium 
content, independent of the mobility of sodium ions. In addition, since 
the restricted sodium is more prone to evolve from SQ to TQ coherences 
under the excitation of a multiple-quantum filter, SQ images are 
weighted towards nonrestricted sodium; in contrast, TQ images are 
weighted towards restricted sodium [10]. 

To investigate the effect of CS on in vivo quantitative analysis, the 
TSC, T*

2f , and T*
2s of WM in all undersampled reconstructions were 

calculated and compared with those values obtained from reference 
reconstructions. The TSC value in WM, TSCWM, was determined using 
TSCWM = TSCref • SNRWM/SNRref , where the SNR of the vitreous humor 
of the eyes was taken as a reference, SNRref , with a fixed TSC, TSCref =

135 mmol/l [42]. SNRref was calculated based on the top five high- 
intensity voxels in the vitreous humor to reduce partial volume ef
fects. Both SNRWM and SNRref were obtained from the first-echo UTE 
images to alleviate signal loss due to relaxation. T*

2f of WM was deter
mined by UTE fitting given by [36]: 

SNRUTE = A • exp

(

–
TEUTE

T*
2f

)

+ B • exp

(

–
TEUTE

T*
2,fix

)

, (2)  

where A and B are constants; SNRUTE and TEUTE are UTE SNR of WM and 
UTE echo times, respectively. The first term accounts for the fast 
relaxation component (T*

2f from restricted sodium). The second term 
represents the slow relaxation component (T*

2s from restricted sodium 
and T*

2 from nonrestricted sodium) and is assumed to have a fixed long 
relaxation time T*

2,fix = 35 ms. The T*
2s value of WM was obtained from 

the TQ echo fitting function given by [4]:  

Fig. 2. FLORET k-space trajectories. 
Subplots (a) and (h) present the first (red), middle (green), and last (blue) projections of UTE and MQF FLORET, respectively. Fully sampled (b) UTE and (i) MQF 
FLORET k-spaces were retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5 in a pseudorandom way: undersampled (c-g) UTE and (j-n) MQF k-spaces. TA =
total acquisition time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Q. Chen et al.                                                                                                                                                                                                                                    



Magnetic Resonance Imaging 107 (2024) 138–148

142

where C is a constant; SNRTQ and TEMQF are the TQ SNR of WM and MQF 
echo times, respectively; λ = 1 ms is the RF pulse duration; τ = 9.5 ms is 
the preparation time, and δ = 60 us is the evaluation time. T*

2f is the 
value obtained from UTE fitting in Eq. (2). If UTE fitting was unreliable 
(i.e., the fitting error was >50%) or if the fit did not converge, Eq. (3) 
was used to obtain both T*

2f and T*
2s values [4]. In the UTE and TQ fittings 

described above, the unbiased SNR serves as a proxy of the signal from 
the region of interest. 

Statistical analysis was used to evaluate the in vivo performance of 
CS. The paired right-tailed Student's t-test was applied to compare SNR 
and SSIM between NUFFT and CS undersampled reconstructions over 
ten healthy subjects. The Wilcoxon right-tailed rank sum test was used if 
SNR or SSIM did not follow a normal distribution and was checked by 
the Lilliefors test. A p-value of 0.05 or less was considered significant. 

Descriptive statistics for all quantitative parameters, including TSC, T*
2f , 

and T*
2s, were provided as means and standard deviations for all subjects. 

Given that quantitative estimates are relatively sensitive to image in
tensity elevation caused by excessive smoothing in CS reconstructions, 
in vivo quantitative performance was assessed by calculating the mean 
difference in quantitative values between test and reference re
constructions across all subjects. For example, the mean difference (in 

%) in TSC from CS is given byΔ =

∑10
i=1[(TSCCS,i–TSCref)/TSCref ]

10 , where 
TSCCS,i and TSCref are the TSC values of the ith subject obtained from CS 
and reference reconstructions, respectively. The quantification of the 
test reconstruction was considered relatively reliable if the absolute 
mean differences of all quantitative estimates were <15%. 

Fig. 3. Schematic and first-echo eSISTINA images of a phantom. 
(a) The schematic shows sodium chloride concentration in mmol/l and agarose weight/deionized water volume in percent (e.g., 2% indicates 2 g of agarose powder 
per 100 ml deionized water). (b) Comparison of NUFFT and CS across all USFs on the first-echo eSISTINA images of the phantom. The UTE (5 mm cubic), SQ (10 mm 
cubic), and TQ (10 mm cubic) datasets were acquired at the Nyquist sampling rate and retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5. The original, 
fully sampled images reconstructed by NUFFT were set as references. 

SNRTQ = C •

[

exp

(

–
TEMQF

T*
2f

)

–exp
(

–
TEMQF

T*
2s

)]

•

[

exp

(

–
λ + τ
T*

2f

)

–exp
(

–
λ + δ
T*

2s

)]

, (3)   
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3. Results 

3.1. Phantom results 

The NUFFT and CS reconstructions of the first-echo UTE, SQ, and TQ 
data from a sodium agarose phantom (Fig. 3a) with various USFs are 
displayed in Fig. 3b. In the case of undersampling, CS generally out
performs NUFFT, with noticeably reduced noise levels and overall better 
preservation of structural information present in the reference images. 
Moreover, the CS-based SQ/TQ images, as well as CS-based UTE images 
with high USFs, even show less noise than the corresponding reference 
images. However, more blurring appears in CS-based images with 
increasing USF, which may lead to a loss of contrast and information. 

As shown in Fig. 3b, for all NUFFT and CS reconstructions, UTE 
images exhibit contrast proportional to the sodium concentration, 
regardless of the agarose percentage, whereas SQ and TQ images present 
contrast dependent on the agarose concentration: at the same sodium 
molarity, SQ signal intensities decrease, and yet TQ signal intensities 
increase with increasing agarose concentration. Moreover, the signal of 

sodium liquids simulating a nonrestricted environment is well sup
pressed in TQ images. These observations are in good agreement with 
the quantum mechanics of eSISTINA [35]. 

Fig. 4 shows the quantitative image quality measures of CS and 
NUFFT reconstructions of the phantom data across all USFs and all 
echoes. In various cases of undersampling, CS yields better SSIM and 
SNR than NUFFT, except that 4 CS-based SQ/TQ SSIM values are 
marginally lower than those from NUFFT but still show relatively high 
values of about 0.9. Moreover, the CS-based SNR values are even higher 
than the reference values in most reconstructions, especially for SQ and 
TQ images. In CS, SNR shows an upward trend while SSIM decreases 
slightly with increasing USF, possibly due to the blurring and loss of 
small structures caused by strong undersampling. 

3.2. In vivo results 

NUFFT and CS reconstructions of a representative in vivo dataset with 
multiple USFs are shown in Fig. 5. From visual inspection, CS generally 
leads to remarkedly reduced noise levels and better delineation of brain 

Fig. 4. Image quality measures of NUFFT and CS reconstructions of phantom (Fig. 3a) data across all USFs and all echoes. 
The NUFFT-based full sampling was used as a reference (green). The values obtained from NUFFT (blue) and CS (red) reconstructions with different USFs are 
represented by different colour gradients. SSIM was calculated over the whole phantom for (a) UTE (5 mm cubic) and (c) SQ (10 mm cubic) images, and over the 
phantom compartments 3–6 for (e) TQ (10 mm cubic) images. SNR was calculated over the phantom compartment 6 for (b) UTE, (d) SQ, and (f) TQ images. The 
legend in subplot d applies to all subplots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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structures compared to NUFFT at various USFs. It should be noted that 
the information contained in the TQ reference image may be biased by 
strong noise contamination, which makes it difficult to compare the 
undersampled TQ image with the TQ reference image. In the case of high 
USFs (e.g., USF = 4 or 5), even large structures like the gray matter are 
hardly visible in NUFFT due to substantial noise, whereas the gray 
matter can be reliably delimited in CS. However, a loss of contrast and 
information caused by excessive smoothing can be observed in CS re
constructions with high undersampling. 

As shown in Fig. 5, the CSF region with high sodium concentration 
appears bright in all UTE and SQ images, as expected. Conversely, the 
signal from the CSF area with a nonrestricted environment is well sup
pressed in all TQ images. Additionally, the brain tissues composed of 
gray matter and WM, which provide both nonrestricted and restricted 

environments, yield higher signal intensity than the CSF area in all TQ 
images despite the relatively low tissue sodium concentration [1]. The 
weightings towards total, nonrestricted, and restricted sodium in all in 
vivo images align with those in the phantom images in Fig. 3b. 

The reconstructions of data from other echoes and other volunteers 
yield similar results. Fig. 6 shows the evaluation of the reconstruction 
performance of NUFFT and CS over a group of ten healthy subjects 
across all USFs and all echoes using SSIM and SNR. CS yields signifi
cantly (p < 0.05) higher SNR values than NUFFT in UTE, SQ, and TQ 
images for all echoes and all USFs (Fig. 6b, d, f). Moreover, the CS-based 
SNR values are better than the reference values in most cases. With 
increasing USF, the NUFFT-based SNR is reduced due to undersampling, 
whereas the CS-based SNR rises because CS tends to excessive smoothing 
at high USFs. As shown in Fig. 6a and c, in both UTE and SQ images, CS 

Fig. 5. Comparison of NUFFT and CS across all USFs on the first-echo in vivo images. 
The UTE (5 mm cubic), SQ (10 mm cubic), and TQ (10 mm cubic) datasets were acquired from the brain of a 32-year-old healthy female subject at the Nyquist 
sampling rate and retrospectively undersampled by factors of 1.5, 2, 3, 4, and 5. The original, fully sampled images reconstructed by NUFFT are presented 
as references. 
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Fig. 6. Image quality measures of NUFFT and CS reconstructions of in vivo data from ten healthy subjects across all USFs and all echoes. 
SSIM and SNR values were obtained from reference (green), NUFFT undersampled (blue), and CS undersampled (red) reconstructions. The means and standard 
deviations of SSIM and SNR over ten healthy subjects are represented by dots and whiskers, respectively. SSIM (a, c, e) and SNR (b, d, f) were calculated over the 
whole brain region and the white matter area, respectively. An asterisk (*) is marked when the CS-based SSIM or SNR values are significantly (p < 0.05) higher than 
those from NUFFT. The legend in subplot d applies to all subplots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
Summary statistics of quantitative analysis of ten healthy subjects.    

Reference USF = 1.5 USF = 2 USF = 3 USF = 4 USF = 5 

T*
2f (ms) 

NUFFT 4.8 ± 0.3 4.5 ± 0.4 (¡5%) 4.3 ± 0.4 (¡9%) 4.3 ± 0.5 (¡8%) 4.1 ± 0.5 (¡14%) 4.1 ± 0.5 (¡14%) 
CS – 4.3 ± 1.4 (¡10%) 4.1 ± 1.2 (¡13%) 3.2 ± 1.1 (− 34%) 3.3 ± 1.7 (− 32%) 3.3 ± 1.6 (− 31%) 

T*
2s (ms) 

NUFFT 29.9 ± 2.0 36.6 ± 2.9 (22%) 38.7 ± 2.8 (30%) 43.4 ± 3.9 (46%) 43.5 ± 3.6 (46%) 44.9 ± 4.1 (51%) 
CS – 28.6 ± 3.3 (¡4%) 27.8 ± 3.3 (¡7%) 28.9 ± 2.3 (¡2%) 28.3 ± 3.0 (¡3%) 28.3 ± 3.6 (¡5%) 

TSC (mmol/l) NUFFT 41.9 ± 1.2 42.0 ± 1.2 (0%) 41.6 ± 1.8 (¡1%) 42.1 ± 1.1 (1%) 41.4 ± 1.8 (¡1%) 41.0 ± 2.3 (¡2%) 
CS – 41.9 ± 1.2 (0%) 43.7 ± 1.7 (4%) 47.9 ± 0.8 (15%) 52.8 ± 1.5 (26%) 54.1 ± 2.3 (29%) 

Abbreviations: USF = undersampling factor, NUFFT = non-uniform fast Fourier transform, CS = compressed sensing, T*
2f = fast transversal relaxation time, T*

2s = slow 
transversal relaxation time, TSC = total sodium concentration. 
The quantitative parameters, T*

2f , T
*
2s, and TSC, obtained from NUFFT-based full sampling, are presented as reference values. The quantitative values obtained from 

NUFFT and CS undersampled reconstructions by factors of 1.5, 2, 3, 4, and 5 are compared to the reference values. Values in the form of mean ± std. represent the 
means and standard deviations of quantitative parameters over ten healthy subjects. The mean difference between the quantitative estimate and the reference value 
across ten subjects is given in parentheses. Differences that fall within the range from − 15% to 15% are marked in bold.  
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leads to SSIM values significantly better than NUFFT, except for a few 
cases where CS-based SSIM is only comparable to NUFFT-based SSIM 
but still has a sufficiently high value of about 0.9. However, in TQ im
ages, most CS reconstructions result in similar or even worse SSIM 
values compared with NUFFT (Fig. 6e), although from visual inspection, 
CS generally outperforms NUFFT with better preservation of the primary 
structural information present in the TQ reference image for all USFs 
(Fig. 5). As USF increases, both NUFFT-based and CS-based SSIM values 
decrease, but CS-based SSIM drops more slowly than NUFFT-based SSIM 
due to the denoising nature of CS. 

Table 1 presents the summary statistics for the quantitative analysis 
on a group of ten healthy subjects. The reference values for WM obtained 
from original, fully sampled NUFFT-based reconstructions are T*

2f = 4.8 

± 0.3 ms, T*
2s = 29.9 ± 2.0 ms, and TSC = 41.9 ± 1.2 mmol/l. These 

values are comparable to the literature values with T*
2f from 0.5 ms to 5 

ms, T*
2s from 15 ms to 30 ms, and TSC of 43 ± 3 mmol/l [5,43]. NUFFT 

yields <15% bias in both T*
2f and TSC for all USFs, whereas quantifica

tion of T*
2f and TSC using CS is only reliable at low USFs. However, it is 

remarkable that for all USFs, the CS-based T*
2s values compare well with 

the reference values, whereas the NUFFT-based T*
2s values are over

estimated with a mean difference larger than 15%. 

4. Discussion 

Motivated by the fact that MQF sodium MRI suffers from clinically 
infeasible measurement times and low image quality, this work imple
ments a novel eSISTINA sequence with an incoherent sampling scheme 
at 7 T and demonstrates that CS can be applied to reconstruct moder
ately undersampled eSISTINA data without noticeably degrading the 
performance of the sequence. 

In this study, CS has three advantages that are especially desirable for 
accelerated eSISTINA. First, CS can improve the image quality of 
undersampled eSISTINA images with substantial noise suppression and 
sound structural information recovery. In various cases of under
sampling, the visual performance of CS was superior to NUFFT, with 
notably reduced noise levels in both phantom (Fig. 3) and in vivo (Fig. 5) 
measurements, which was confirmed by SNR measures (Figs. 4b, d, f and 
6b, d, f). Most CS undersampled reconstructions yielded SNR values 
even higher than fully sampled reference reconstructions. The consid
erable noise reduction facilitated the delineation of structures in CS, 
whereas these structures were difficult to distinguish from the sub
stantial noise contamination in NUFFT. Consequently, CS generally 
outperformed NUFFT in the SSIM measures of phantom (Fig. 4a, c, e) 
and in vivo (Fig. 6a, c) images, with the exception of TQ brain images 
(Fig. 6e). One possible explanation for the inferior in vivo performance of 
TQ SSIM is that severe noise contamination in TQ brain images may 
produce biased estimates of SSIM and, in particular, here the CS-based 
SSIM was underestimated by comparing greatly denoised CS-based 
brain images with heavily noisy TQ reference brain images. 

The second advantage of CS is that it had little effect on the 
weightings towards total, nonrestricted, and restricted sodium in eSIS
TINA images from both phantom (Fig. 3) and in vivo (Fig. 5) studies. This 
suggests that with CS-based acceleration, the eSISTINA sequence can 
still maintain its performance in yielding a weighting towards total so
dium in UTE images, a weighting towards nonrestricted sodium in SQ 
images, and a weighting towards restricted sodium in TQ images. 

Third, CS enabled relatively reliable quantification of T*
2f , T*

2s, and 
TSC values with a USF of up to two, whereas NUFFT failed in the 
quantification due to the overestimation of T*

2s value (Table 1). A 
possible explanation for the overestimated T*

2s is that the SNR values 
taken from undersampled NUFFT-based TQ images were too low for the 
signal decay fitting routine to obtain accurate T*

2s. 
Despite the above advantages, there are three practical limitations 

and considerations when applying CS to MQF sodium MRI. First, there is 
no gold standard for SNR and structure preservation measures in 
nonlinear iterative reconstructions, making it difficult to compare 
different algorithms. Common approaches for determining SNR depend 
on a spatially uniform noise distribution with known statistical char
acteristics; for example, the method used in this study requires a Ray
leigh noise distribution. Unlike NUFFT-based noise profiles adequately 
described by the Rayleigh distribution, the spatial and statistical prop
erties of noise from iterative reconstructions remain unclear. This may 
bias the estimation of SNR values (Figs. 4b, d, f and 6b, d, f) and other 
relative parameters, such as T*

2f , T*
2s, and TSC in CS reconstructions 

(Table 1). SSIM was chosen to measure structural information degra
dation but is only meaningful if the ground truth image is known. Given 
that ground truth images were unavailable in this study, reference im
ages were used as an alternative for computing SSIM. This may lead to 
unreliable SSIM values if the reference image does not agree well with 
the ground truth, such as the TQ reference brain image being heavily 
contaminated by noise (Figs. 5, 6e). The structural degradation could be 
better analyzed by computing the local point spread function [44]. 
However, it cannot be directly applied to non-Cartesian FLORET data 
since the image reconstruction involves gridding interpolation. 

The second limitation is the long reconstruction times and difficult 
parameterization of CS. CS requires complex iterative algorithms to 
solve nonlinear optimization problems, leading to long processing times 
(usually hours). In addition, manual tuning of regularization parameters 
was performed for each reconstruction task in this study, which resulted 
in a heavy computational burden. It was observed that CS exhibited poor 
generalization across data types but good generalization across subjects, 
echoes, and USFs. Thus, the regularization parameters, λ1 and λ2, can be 
kept constant for different subjects, echoes, and USFs to reduce the 
computational burden. Moreover, the reconstruction performance of CS 
is sensitive to parameter tuning. The rigid manual tuning using empir
ical search in this study may have led to image quality dispersion among 
different subjects and echoes, which may have biased the TSC estimate 
and echo fitting for T*

2f and T*
2s. Fortunately, deep learning has been 

shown to enable fast and accurate reconstruction of undersampled k- 
space data without manual parameter tuning and could be applied to 
mitigate this limitation in future work [26,45]. 

Third, the noise level decreased with increasing USF (Figs. 4b, d, f 
and 6b, d, f), while the errors in image contrast (Figs. 4a, c, e and 6a, c, e) 
and quantitative analysis (Table 1) increased. Hence, consideration must 
be given to selecting an appropriate USF that balances these two factors. 
In this work, CS only enabled a USF of up to two for eSISTINA, with 
reduced noise levels and proper maintenance of visual information and 
quantitative estimates. The achievable USF in non‑hydrogen MRI is 
limited compared with hydrogen MRI, which is mainly due to the 
intense noise caused by the relatively low NMR sensitivity of non‑hy
drogen nuclei. Previous studies have shown that the performance of 
conventional CS in sodium MRI can be further improved by incorpo
rating hydrogen anatomical constraints [20,22,27] or sparsity in learned 
dictionaries [23,25,28]. Furthermore, supplying prior knowledge about 
temporal signal evolution led to a more accurate estimation of trans
versal relaxation times for CS in hydrogen MRI [46]. The above con
straints could be added to the CS cost function shown in Eq. (1), which 
may enable a higher USF for MQF sodium MRI. 

In the future, the clinical potential of CS-based accelerated MQF 
sodium MRI may be investigated in several areas. For example, given 
that the resolution of conventional eSISTINA images is commonly 
sacrificed for shorter measurement times and higher SNR, applying CS to 
achieve higher-resolution MQF sodium imaging while maintaining an 
acceptable protocol duration has the potential to yield an important 
clinical impact. 

Since the intracellular sodium concentration, volume fraction, and 
molar fraction can further provide valuable information for diagnosis or 
medical treatment [3,4,36], it is worth investigating the effect of CS on 
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intracellular sodium quantification. 
Furthermore, CS is not limited to sodium MRI but can also be applied 

to other nuclei with even lower NMR sensitivity, such as potassium 
(39K), chlorine (35Cl), and oxygen (17O) [47]. 

5. Conclusions 

Driven by the interest in a reduction in acquisition time for MQF 
sodium MRI, this proof-of-concept study establishes a novel eSISTINA 
sequence with an incoherent sampling scheme at 7 T and demonstrates 
the feasibility of applying CS to accelerate eSISTINA acquisitions of the 
human brain. The experimental results on retrospectively undersampled 
k-space data show that CS can accelerate eSISTINA by up to a factor of 
two at 7 T with higher SNR and better structural preservation than 
NUFFT, while maintaining relatively reliable in vivo quantification and 
proper weightings towards total and compartmental sodium. The 
feasibility of sequence implementation and the reduction in acquisition 
times have the potential to facilitate the applicability of MQF sodium 
MRI in clinical practice. 
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