001023020 001__ 1023020
001023020 005__ 20250204113803.0
001023020 0247_ $$2doi$$a10.1016/j.jmb.2024.168458
001023020 0247_ $$2ISSN$$a0022-2836
001023020 0247_ $$2ISSN$$a1089-8638
001023020 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01603
001023020 0247_ $$2pmid$$a38280482
001023020 0247_ $$2WOS$$aWOS:001218660600001
001023020 037__ $$aFZJ-2024-01603
001023020 082__ $$a610
001023020 1001_ $$0P:(DE-Juel1)161543$$aArinkin, Vladimir$$b0
001023020 245__ $$aConserved Signal Transduction Mechanisms and Dark Recovery Kinetic Tuning in the Pseudomonadaceae Short Light, Oxygen, Voltage (LOV) Protein Family
001023020 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
001023020 3367_ $$2DRIVER$$aarticle
001023020 3367_ $$2DataCite$$aOutput Types/Journal article
001023020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721025513_14182
001023020 3367_ $$2BibTeX$$aARTICLE
001023020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023020 3367_ $$00$$2EndNote$$aJournal Article
001023020 520__ $$aLight-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.
001023020 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001023020 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001023020 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023020 7001_ $$0P:(DE-Juel1)131965$$aGranzin, Joachim$$b1
001023020 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b2
001023020 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b3$$ufzj
001023020 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b4
001023020 7001_ $$0P:(DE-Juel1)131950$$aBatra-Safferling, Renu$$b5$$eCorresponding author$$ufzj
001023020 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2024.168458$$gp. 168458 -$$n5$$p168458 -$$tJournal of molecular biology$$v436$$x0022-2836$$y2024
001023020 8564_ $$uhttps://juser.fz-juelich.de/record/1023020/files/1-s2.0-S002228362400024X-main.pdf$$yOpenAccess
001023020 8564_ $$uhttps://juser.fz-juelich.de/record/1023020/files/1-s2.0-S002228362400024X-main.gif?subformat=icon$$xicon$$yOpenAccess
001023020 8564_ $$uhttps://juser.fz-juelich.de/record/1023020/files/1-s2.0-S002228362400024X-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023020 8564_ $$uhttps://juser.fz-juelich.de/record/1023020/files/1-s2.0-S002228362400024X-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023020 8564_ $$uhttps://juser.fz-juelich.de/record/1023020/files/1-s2.0-S002228362400024X-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023020 8767_ $$d2024-02-14$$eHybrid-OA$$jDEAL
001023020 909CO $$ooai:juser.fz-juelich.de:1023020$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001023020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131965$$aForschungszentrum Jülich$$b1$$kFZJ
001023020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b2$$kFZJ
001023020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b3$$kFZJ
001023020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b4$$kFZJ
001023020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131950$$aForschungszentrum Jülich$$b5$$kFZJ
001023020 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001023020 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001023020 9141_ $$y2024
001023020 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001023020 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001023020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001023020 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023020 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023020 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001023020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL BIOL : 2022$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001023020 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL BIOL : 2022$$d2024-12-13
001023020 920__ $$lyes
001023020 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001023020 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
001023020 980__ $$ajournal
001023020 980__ $$aVDB
001023020 980__ $$aI:(DE-Juel1)IBI-7-20200312
001023020 980__ $$aI:(DE-Juel1)IMET-20090612
001023020 980__ $$aAPC
001023020 980__ $$aUNRESTRICTED
001023020 9801_ $$aAPC
001023020 9801_ $$aFullTexts