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A B S T R A C T

We have developed, implemented and validated 1D and 2D population balance models (PBMs) in the open-
source process simulator CADET. 1D PBMs incorporate the particle size as an internal coordinate and are
associated with dynamic mass balances to describe particle-based processes in batch and continuous stirred
tank reactors. 2D PBMs include the spatial position as an additional external coordinate to describe particulate
systems in dispersive plug flow reactors. Along with particle nucleation and growth, growth rate dispersion
is considered. Using the finite volume method, cell face fluxes are reconstructed by upwind, Koren and two
weighted essentially non-oscillatory (WENO) schemes. Analytical Jacobians are derived to reduce runtime.
The implementations utilize arbitrary grids in the internal coordinate. The implementations are validated and
benchmarked using seven test cases. The L1 error norm, L1 error convergence rate, and moments up to sixth
order are analyzed. Runtime and approximation errors are reported and discussed in detail.
1. Introduction

Precipitation and crystallization represent important processes for
the separation and purification of a wide range of fine chemicals,
food products, pharmaceuticals and biopharmaceuticals (Randolph and
Larson, 1988; Myerson et al., 2002). Both processes are typically per-
formed in batch stirred tank reactors (BSTR) or continuous stirred
tank reactors (CSTR) (Wood et al., 2019). More recently continuous
operation in dispersive plug flow reactor (DPFR) formats is receiving
growing interest (Rothstein, 1993; Li et al., 2019; Burgstaller et al.,
2019; Bansode et al., 2022; Alvarez and Myerson, 2010; Jiang and
Braatz, 2019). The particle size distribution (PSD) of the final product
that exits a crystallization or precipitation reactor has a significant
impact on the design and operation of subsequent processing steps,
such as settling, centrifugation, filtration, drying, and filling, and may
also play an important role in the ultimate performance of the product.
Therefore, a powerful and flexible modeling tool is needed for the
prediction of PSD in particulate processes.

The population balance model (PBM) is in common use in the de-
scription of BSTR- and CSTR-based particulate processes and has been
shown to accurately predict the PSD in crystallization processes (Ran-
dolph and Larson, 1988; Myerson et al., 2002). The PBM is at heart a
continuity equation following a mass conservation law combined with
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a set of nucleation and growth kinetic equations that, combined to-
gether, are able to track the behaviors of a dynamic particle population
as a whole (Randolph and Larson, 1988; Hulburt and Katz, 1964).
Despite their relatively simple construction, the governing equations
themselves are hard to solve. There are special conditions where the
PBM may be solved analytically, but these conditions are of minimal
practical use. Through the effort of many researchers over the last three
decades, several algorithms for solving the PBM have been established.
Widely used algorithms can be broadly categorized into three types:
the method of moments (Smith and Matsoukas, 1998; Marchisio et al.,
2003; Yuan et al., 2012), discretization methods (Gunawan et al.,
2004; Bennett and Rohani, 2001; Qamar et al., 2009) and Monte
Carlo methods (Smith and Matsoukas, 1998; Lin et al., 2002). Less
common algorithms have also been used and include the spectrum
method (Mantzaris et al., 2001), the Lattice Boltzmann method (Ma-
jumder et al., 2012) and the method of characteristics (Pilon and
Viskanta, 2003). The discretization methods, including finite differ-
ence, finite volume, and finite element methods, are universal methods
for solving partial differential equations. Discontinuous Galerkin meth-
ods belong to the class of finite element methods and have also been
applied to the solution of the PBM (Ahmed et al., 2011).
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Among all the algorithms, the finite volume method stands out
as the most documented and used method for solving the PBM. The
finite difference method is easy to implement but may not be the best
choice for the PBM because it is not mass preserving. In addition, it
can introduce relatively strong numerical diffusion, leading to artificial
broadening of the distribution (Mahoney and Ramkrishna, 2002) and
larger errors compared with the finite volume method (Gunawan et al.,
2004). Contrary to the finite difference and finite volume methods, the
finite element and discontinuous Galerkin methods are rather complex.
Furthermore, comparative studies have shown that the latter methods
can have poor performance when sharp moving fronts, which may be
introduced by fast and nonlinear growth rates, are present (Mesbah
et al., 2009). Compared to these methods, the finite volume method
has several advantages: 1. the implementation is not difficult; 2. it suits
the hyperbolic nature of the PBM; 3. it fully recovers the PSD; 4. mass
is always conserved; and 5. boundary conditions enter finite volume
discretizations naturally.

Using the finite volume method, Gunawan et al. (2004) tested a
high-resolution scheme with a flux limiter based on LeVeque’s analysis
of hyperbolic equations (LeVeque, 2002). Qamar et al. (2006) carried
out a numerical analysis on another finite volume high-resolution
scheme originally developed by Barry (1993). Both schemes have been
shown to offer excellent accuracy when used with a uniform grid.
However, using a nonuniform grid can improve the computational
efficiency by requiring fewer cells, particularly when the experimental
PSD data are reported on a nonuniform grid. Unfortunately, the orig-
inal high-resolution scheme uses an unmodified van Leer flux limiter
that is not valid on nonuniform grids. In addition to high-resolution
schemes, and instead of using flux limiters to limit the numerical
flux, the weighted essentially non-oscillatory (WENO) scheme, which
focuses on an essentially non-oscillatory flux reconstruction, is also a
promising candidate for solving the PBM (Liu et al., 1994; Jiang and
Shu, 1996; Harten et al., 1987). Lim et al. (2002) found that the finite
volume WENO scheme was superior to the methods of characteristics
in terms of resolving steep PSD fronts and discontinuities. Hermanto
et al. (2009) compared WENO schemes with a high-resolution scheme
and a finite difference scheme on a uniform grid and concluded that
the WENO scheme is well suited to solve the PBM as it exhibited an
average error convergence rate of 2.59 as well as a short runtime.
However, contrary to its simple expressions on uniform grids, which
aided its popularity, WENO formulations on a nonuniform grid are
rather complex.

The PBM commonly employs constitutive particle nucleation and
growth equations which are often tested together. In addition to the
most commonly seen situation where the nucleation processes generate
particles as mono-sized critical nuclei, particles may be born beyond the
critical nuclei size (Ramkrishna, 2000), a situation that has not been
investigated numerically. Apart from nucleation and growth processes,
several recent publications direct the community’s attention to the
modeling of growth rate dispersion (Myerson et al., 2002; Alvarez
and Myerson, 2010; Srisanga et al., 2015; Benitez-Chapa et al., 2020).
According to Randolph and Larson (1988), the random fluctuation that
occurs around the mean particle size can be represented by a second
order term resembling molecular diffusion. Even though this approach
is widely accepted now, its numerical aspects have not yet been studied
by any finite volume method based PBM analysis.

The analyses above are based on the one-dimensional formulation
of the PBM which is suitable for the simulation of well-mixed BSTR
and CSTR based operations. Unfortunately, the 1D PBM falls short
when newer process formats based on dispersive plug flow reactors
(DPFRs) are used. Here, a multi-dimensional PBM is needed to include
one or more spatial reactor dimensions. We have formulated a two-
dimensional population balance model (2D PBM) for the DPFR format
which incorporates both an internal particle size coordinate and an
2

external spatial (axial) coordinate. The lack of a convenient 2D PBM
design tool with associated comprehensive numerical analysis and val-
idation motivated us to implement and test a 2D PBM that is specifically
formulated for DPFRs.

Both the 1D and 2D PBMs are implemented and tested in CADET
(von Lieres and Andersson, 2010; Leweke and von Lieres, 2018), a
modular, free and open-source process modeling software package that
has a C++ numerical core and can be easily accessed from a user-
friendly Python environment. CADET was originally developed as a
fast and accurate numerical solver for the mechanistic modeling of
chromatographic processes, but it has been actively developed and ex-
tended in recent years to tackle numerical challenges in the modeling of
crystallization, filtration, and fermentation processes. CADET consists
of a large network of unit operations including reactors, pumps, valves,
tubes, tanks, and uses state-of-the-art algorithms and scientific com-
puting techniques to efficiently solve differential–algebraic equations.
CADET uses the backward differential formula (BDF) implemented in
the implicit differential–algebraic solver (IDAS) as the time integrator.
Application of the BDF to the discretized PBM yields a nonlinear
algebraic equation system that is solved using Newton iterations. Dur-
ing each Newton iteration, IDAS expects a Jacobian to be provided.
Automatic Differentiation (AD) is employed to provide the Jacobian
and has been implemented in CADET in a previous release (Leweke and
von Lieres, 2018). To reduce the runtime, we also provide IDAS with an
analytical Jacobian. Symbolic expressions of the analytical Jacobian are
dependent on the solution schemes used for the internal and external
coordinates and, especially when a nonuniform grid is used, can be very
complicated.

The purpose of this research work is to 1. carry out a thorough
numerical analysis on the 1D and 2D PBMs; 2. implement, validate and
benchmark numerical schemes for the 1D and 2D PBMs in the modular,
free and open-source process modeling package CADET; 3. compare
these schemes in terms of their accuracy and efficiency under different
conditions and provide guidance on how to identify a reliable, efficient
and robust method. Overall, this work aims to provide references and
new insights into: PBM formulations for BSTR, CSTR and DPFR formats;
numerical approximations applied to the growth rate dispersion; and
finite volume methods using high order flux reconstructions on a
nonuniform grid and their associated analytical Jacobians.

2. The population balance model

2.1. Governing equations

The population balance model is a widely used mathematical frame-
work for modeling crystallization and precipitation processes. The
population balance equation is a particle-number continuity equation
which describes the evolution of the number density 𝑛 of particles
n the time and space domains. The particles of interest have both
nternal and external coordinates: the internal coordinate can be chosen
s any property of the particles such as the particle size or volume,
hile the external coordinate can be a characteristic dimension of the

eactor itself, including the axial position. Although each coordinate
an constitute a variety of characteristic properties of particles and
eactors, the most common choice is to use a particle size 𝑥 as the
nternal coordinate for spatially uniform reactor format cases like
STRs or CSTRs, or adding an axial position 𝑧 as the external coordinate
o account for spatial variations in the DPFR case.

.1.1. PBM in a batch or continuous stirred-tank reactor (BSTR or CSTR)
The one-dimensional population balance for a well-mixed reactor,

ncluding particle nucleation and growth processes as well as growth
ate dispersion, is
𝜕(𝑛𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 − 𝑉
(

𝜕(𝑣𝐺𝑛)
𝜕𝑥

−𝐷𝑔
𝜕2𝑛
𝜕𝑥2

− 𝐵0𝑃
)

(1)

where 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 are the volumetric inflow and outflow rates, 𝑉 is the

reactor volume, 𝑛 is the number density, 𝑛𝑖𝑛 is the inlet number density
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distribution, 𝑣𝐺 is the particle growth rate, 𝐷𝑔 is an empirically defined
growth dispersion rate which will be discussed in the next section, 𝐵0 is
the nucleation kinetics and 𝑃 = 𝑃 (𝑥) is the probability density function
of the particles generated by nucleation. A special case is that when the
particles are born as mono-sized critical nuclei (Randolph and Larson,
1988), rendering

𝜕(𝑛𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 − 𝑉
(

𝜕(𝑣𝐺𝑛)
𝜕𝑥

−𝐷𝑔
𝜕2𝑛
𝜕𝑥2

− 𝐵0𝛿(𝑥 − 𝑥𝑐 )
)

(2)

here 𝑃 becomes the Dirac delta function 𝛿 and 𝑥𝑐 is the critical
ucleus size. This is the most commonly seen case in the literature. The
bove two equations are valid in the absence of particle aggregation
nd breakage processes.

The corresponding upper boundary condition for both cases is called
he regularity boundary condition: it states that the total flux in the
nternal coordinate vanishes for particles of infinite sizes (Ramkrishna,
000):
(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|

|

|

|𝑥→∞
= 0. (3)

The lower boundary condition for Eq. (1) is
(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|

|

|

|𝑥=𝑥𝑚𝑖𝑛
= 0, (4)

where 𝑥𝑚𝑖𝑛 is the minimum particle size considered. If particles are born
as critical nuclei, they enter the particle coordinate through the Dirac
delta function. Mathematically, Eq. (2) is equivalent to the following
PDE with a nucleation boundary condition at 𝑥𝑐 that treats nuclei as a
point source:

𝜕(𝑛𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 − 𝑉
(

𝜕(𝑣𝐺𝑛)
𝜕𝑥

−𝐷𝑔
𝜕2𝑛
𝜕𝑥2

)

, (5)

(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|

|

|

|𝑥=𝑥𝑐
= 𝐵0. (6)

The initial condition can be any arbitrary distribution for both cases:
|𝑡=0 = 𝑛0, where 𝑛0 can be a Gaussian, Log-normal, Gamma, or other
istribution.

If the solute concentration 𝑐 in the bulk phase is of interest, Eq. (1)
an be coupled with a solute mass balance equation:
𝜕(𝑐𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑐𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑐 − 𝜌𝑘𝑣𝑉 ∫

∞

𝑥𝑚𝑖𝑛
𝐵0𝑃𝑥

3 + 3𝑣𝐺𝑛𝑥2 d𝑥, (7)

where 𝑐 is the solute mass concentration, 𝑐𝑖𝑛 is the inlet solute mass
concentration, 𝜌 is the nuclei mass density and 𝑘𝑣 is the volumetric
shape factor of the particles. The first term inside the integral accounts
for the solute mass consumed by nucleation and the second term
accounts for the solute mass consumed by particle growth. It is worth
mentioning that the solute mass concentration is based on the total
volume instead of the solid-free volume. If particles are born as critical
nuclei, the mass balance equation becomes (Randolph and Larson,
1988; Nagy et al., 2008):

𝜕(𝑐𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑐𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑐 − 𝜌𝑘𝑣𝑉

(

𝐵0𝑥
3
𝑐 + 3∫

∞

𝑥𝑐
𝑣𝐺𝑛 𝑥2 d𝑥

)

. (8)

The initial condition for the mass balance in both cases is 𝑐|𝑡=0 = 𝑐0,
where 𝑐0 is the initial solute mass concentration in the reactor.

Lastly, if the inflow and outflow rates are different, an auxiliary
quation to track the evolution of the reactor’s volume is included and
olved along with above equations:
d𝑉
d𝑡

= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡. (9)

2.1.2. PBM in a dispersive plug flow reactor (DPFR)
If we choose the axial position within a plug flow reactor as the

external coordinate 𝑧, the 2D PBM incorporating axial dispersion is

𝜕𝑛 = −𝑣 𝜕𝑛 +𝐷 𝜕2𝑛 −
𝜕(𝑣𝐺𝑛) +𝐷 𝜕2𝑛 + 𝐵 𝑃 , (10)
3

𝜕𝑡 𝑎𝑥 𝜕𝑧 𝑎𝑥 𝜕𝑧2 𝜕𝑥 𝑔 𝜕𝑥2 0
where 𝑣𝑎𝑥 is the axial velocity, 𝐷𝑎𝑥 is the axial dispersion coefficient
nd 𝑃 = 𝑃 (𝑥) is the probability density function of the particles
enerated by nucleation. The above equation assumes that nucleation
an happen at any position inside the reactor. If the particles are born
s critical nuclei, then 𝑃 becomes a Dirac delta function:

𝜕𝑛
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑛
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑛
𝜕𝑧2

−
𝜕(𝑣𝐺𝑛)
𝜕𝑥

+𝐷𝑔
𝜕2𝑛
𝜕𝑥2

+ 𝐵0𝛿(𝑥 − 𝑥𝑐 ). (11)

The lower and upper boundary conditions for the internal coordi-
nate are the same as those for the 1D PBM as show in Eqs. (3) and
(4).

In the critical nuclei birth case, the Dirac delta function in Eq. (11)
can be eliminated by using a nucleation boundary condition for the
internal coordinate, leading to

𝜕𝑛
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑛
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑛
𝜕𝑧2

−
𝜕(𝑣𝐺𝑛)
𝜕𝑥

+𝐷𝑔
𝜕2𝑛
𝜕𝑥2

(12)

with the updated boundary condition given by Eq. (6).
For the external coordinate 𝑧, Danckwerts boundary conditions are

pplied:
(

𝑛𝑣𝑎𝑥 −𝐷𝑎𝑥
𝜕𝑛
𝜕𝑧

)

|

|

|

|𝑧=0
= 𝑣𝑎𝑥𝑛𝑖𝑛,𝑥,

𝜕𝑛
𝜕𝑧

|

|

|

|𝑧=𝐿
= 0, (13)

where 𝐿 is the length of the DPFR. The initial condition for the 2d
PBM is given by 𝑛|𝑡=0 = 𝑛0, where 𝑛0 is the initial distribution of the
seed particles.

The particle population balance Eq. (11) can again be coupled to
the solute mass balance equation:

𝜕𝑐
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑐
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑐
𝜕𝑧2

− 𝜌𝑘𝑣 ∫

∞

𝑥𝑚𝑖𝑛
𝐵0𝑃𝑥

3 + 3𝑣𝐺𝑛𝑥2 d𝑥. (14)

If particles are born as critical nuclei, Eq. (10) is coupled to the
following mass balance equation:

𝜕𝑐
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑐
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑐
𝜕𝑧2

− 𝜌𝑘𝑣

(

𝐵0𝑥
3
𝑐 + 3∫

∞

𝑥𝑐
𝑣𝐺𝑛𝑥

2 d𝑥

)

. (15)

As with the particle phase, the solute mass concentration 𝑐 is also
subject to the Danckwerts boundary conditions
(

𝑐𝑣𝑎𝑥 −𝐷𝑎𝑥
𝜕𝑐
𝜕𝑧

)

|

|

|

|𝑧=0
= 𝑣𝑎𝑥𝑐𝑖𝑛,

𝜕𝑐
𝜕𝑧

|

|

|

|𝑧=𝐿
= 0. (16)

The initial condition for the mass balance is 𝑐|𝑡=0 = 𝑐0, where 𝑐0 is
the initial spatial mass concentration distribution of the solute in the
reactor.

2.2. Constitutive equations

Constitutive equations describe the nucleation and growth kinetic
processes in the governing equations. Most of these relations have been
widely used to describe crystallization processes (Randolph and Larson,
1988; Myerson et al., 2002) and are assumed to be applicable to precip-
itation processes (Raphael and Rohani, 1999; Marchal et al., 1988). The
solute starts to precipitate or crystallize when the solute concentration
exceeds its solubility in the solvent. Supersaturated solutions can be
created by changing the temperature, evaporating the solvent or adding
an anti-solvent. The extent of supersaturation provides the driving
force for the nucleation and growth processes. We define a relative
supersaturation 𝑠 as

𝑠 =
𝑐 − 𝑐𝑒𝑞
𝑐𝑒𝑞

,

where 𝑐𝑒𝑞 is the solute solubility in the solvent.
New particles are formed through primary and secondary nucleation

mechanisms. Primary nucleation refers to nuclei formation when no
suspended particles are present while secondary nucleation refers to
nuclei formation around other particles or in contact with the reactor
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vessel surfaces (Randolph and Larson, 1988). An empirical equation for
primary nucleation is frequently used:

𝐵𝑝 = 𝑘𝑝𝑠
𝑢,

where 𝑘𝑝 is the primary nucleation rate constant and 𝑢 is a constant.
Regarding secondary nucleation, an empirical power-law expression
that is frequently used in the literature (Randolph and Larson, 1988)
is considered:

𝐵𝑠 = 𝑘𝑏𝑠
𝑏𝑀,

where 𝑘𝑏 is the secondary nucleation rate constant, 𝑏 is a system-related
parameter and 𝑀 is the suspension density. A higher suspension density
provides a higher collision rate and, therefore, greater effectiveness for
secondary nucleation mechanisms (Randolph and Larson, 1988). 𝑀 is
efined as

= 𝑘𝑣𝜌∫

∞

0
𝑛 𝑥3 d𝑥.

Some authors use the volume fraction 𝜙 to replace the suspension
ensity 𝑀 . The two can be easily inter-converted using 𝑀 = 𝜌𝜙. The
otal nucleation rate is the sum of the primary and secondary nucleation
ates:

0 = 𝐵𝑝 + 𝐵𝑠.

Note that there is no convincing evidence that secondary nucleation
akes place when particles are nucleated at sizes larger than the critical
uclei size. Hence, secondary nucleation is generally ignored in this
ase.

Particle growth can generally be defined as the process in which
olutes are transported to the particle surface and then oriented and in-
orporated into the particle lattice (Myerson et al., 2002). Current mod-
ls can be classified into size-independent or size-dependent growth
odels. A size-dependent growth mechanism was proposed based on

he idea that as the particle becomes larger, its total surface area
ncreases, increasing the probability of occurrence of dislocations on
he surface (Garside and Jančić, 1976). A general expression for the
rowth rate incorporating both size-independent and size-dependent
echanisms is given by

𝐺 = 𝑘𝑔𝑠
𝑔(𝑎 + 𝛾𝑥)𝑝,

here 𝑘𝑔 is the growth rate constant, 𝛾 quantifies the size dependence,
nd 𝑔, 𝑎 and 𝑝 are system-related constants. If 𝑎 = 1, the model
ecomes the three-parameter Abegg’s model (Abegg et al., 1968), if
= 0 and 𝛾 = 1, this model reduces to Bransom’s model, if 𝑎 = 𝑝 =

, this model becomes Canning and Randolph’s model (Canning and
andolph, 1967). For size-independent growth, setting 𝛾 = 0 and 𝑝 = 0
esults in 𝑣𝐺 = 𝑘𝑔𝑠𝑔 . This is also known as McCabe’s 𝛥𝐿 law (McCabe,
929).

Growth rate dispersion is another phenomenon closely associated
ith size-dependent growth. This concept originates in experimental
bservations of particle growth processes, where particles of the same
izes and compositions exposed to identical temperature, supersatu-
ation and hydrodynamic conditions do not necessarily grow at the
ame rate (Randolph and White, 1977). This is not the same as size-
ependent growth, in which the growth rate of particles of different
izes can be experimentally measured to be different. Two theories have
een proposed to explain growth rate dispersion. The first posits that
uclei are born with an intrinsic distribution of growth rates (Larson
t al., 1985). The second proposes that particles display the same time-
veraged growth rate, but that the growth rate of each individual
article may fluctuate as a function of time (Randolph and White,
977). The second theory has led to the formulation of PBMs with a
ispersion term in the internal coordinate (Eq. (2), the second term
n the right hand side): according to Randolph and Larson (1988), the
preading of the PSD due to random fluctuations in the growth rate
4

an be represented as a dispersive flux in response to a gradient in
he size distribution, analogous to a molecular diffusion flux due to a
patial concentration gradient. There are other underlying mechanisms
ypothesized to explain growth rate dispersion (Larson et al., 1985),
ut they are rarely used in the current literature. Since our primary
im is to investigate the numerical aspects of the PBM, not the physical
ature of the phenomenon, we focus on the dispersive flux formulation
f this process (Myerson et al., 2002; Alvarez and Myerson, 2010;
risanga et al., 2015).

The last piece of the PBM is the solubility model. The solubility
𝑒𝑞 often depends on temperature or anti-solvent concentration. Well-
nown solubility theories and models include, but are not limited to,
egular solution theory and the NRTL, UNIQUAC, COSMO-RS models
mong others (Myerson et al., 2002). Semi-empirical models such as
he Cohn–Setschenow equation are often used in precipitation pro-
esses (Gu et al., 2020). The specific functional dependence of the
olubility model is highly dependent on the nature of the crystallization
r precipitation system and it is difficult to give a general expression for
ll applications. To facilitate the future implementation of the external
ependence of the solubility, we treat the solubility as a separate
seudo-component of the solution having a concentration 𝑐𝑒𝑞 .

. Finite volume method discretization

.1. One dimensional discretization: internal coordinate 𝑥

In this section, we apply the cell-centered finite volume method to
iscretize Eqs. (1) and (5). First, we truncate the upper bound from
nfinity to a sufficiently large number 𝑥𝑚𝑎𝑥 and discretize between 𝑥𝑚𝑖𝑛
nd 𝑥𝑚𝑎𝑥, obtaining: 𝑥𝑚𝑖𝑛 = 𝑥1∕2 < 𝑥3∕2 < ⋯ < 𝑥𝑁𝑥−1∕2 < 𝑥𝑁𝑥+1∕2 =
𝑚𝑎𝑥, where 𝑁𝑥 is the total number of cells for the internal coordinate.

For the most common situation where all particles are nucleated as
critical nuclei, 𝑥𝑚𝑖𝑛 is usually chosen as 𝑥𝑐 . The size of cell 𝑖 is denoted
by 𝛥𝑥𝑖 = 𝑥𝑖+1∕2−𝑥𝑖−1∕2 and its center is defined as 𝑥𝑖 = (𝑥𝑖+1∕2+𝑥𝑖−1∕2)∕2.

Applying the product rule to the temporal derivative and the cell-
centered finite volume discretization to Eq. (1), we obtain

∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2

(

𝑛 𝜕𝑉
𝜕𝑡

+ 𝑉 𝜕𝑛
𝜕𝑡

)

d𝑥 =

∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 d𝑥 + ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝐵0𝑃𝑉 d𝑥

(

− (𝑣𝐺𝑛)||𝑥𝑖+1∕2 + (𝑣𝐺𝑛)||𝑥𝑖−1∕2 + 𝐷𝑔
𝜕𝑛
𝜕𝑥

|

|

|

|𝑥𝑖+1∕2
− 𝐷𝑔

𝜕𝑛
𝜕𝑥

|

|

|

|𝑥𝑖−1∕2

)

𝑉 ,

(17)

where (𝑣𝐺𝑛)|𝑥𝑖±1∕2 and 𝐷𝑔
𝜕𝑛
𝜕𝑥 |𝑥𝑖±1∕2 are the convective and diffusive

fluxes at cell faces 𝑥𝑖±1∕2, respectively. Defining the cell average number
density 𝑛𝑖 as

𝑛𝑖 =
1
𝛥𝑥𝑖 ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝑛 d𝑥 (18)

and approximating 𝑃 and 𝑛𝑖𝑛 via the midpoint quadrature rule
∫
𝑥𝑖+1∕2
𝑥𝑖−1∕2 𝑃 d𝑥 ≈ 𝑃 (𝑥𝑖)𝛥𝑥𝑖 and ∫

𝑥𝑖+1∕2
𝑥𝑖−1∕2 𝑛𝑖𝑛 d𝑥 ≈ 𝑛𝑖𝑛(𝑥𝑖)𝛥𝑥𝑖, Eq. (17) becomes

𝑛𝑖
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑖
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛,𝑖 − 𝐹𝑜𝑢𝑡𝑛𝑖 + 𝐵0𝑃𝑖𝑉

⎛

⎜

⎜

⎜

⎝

−
(𝑣𝐺𝑛)||𝑥𝑖+1∕2 − (𝑣𝐺𝑛)||𝑥𝑖−1∕2

𝛥𝑥𝑖
+𝐷𝑔

𝜕𝑛
𝜕𝑥
|

|

|𝑥𝑖+1∕2
− 𝜕𝑛

𝜕𝑥
|

|

|𝑥𝑖−1∕2

𝛥𝑥𝑖

⎞

⎟

⎟

⎟

⎠

𝑉 ,
(19)

where 𝑃𝑖 = 𝑃 (𝑥𝑖) and 𝑛𝑖𝑛,𝑖 = 𝑛𝑖𝑛(𝑥𝑖). The approximation 𝑃𝑖 of the source
erm 𝑃 is second-order accurate. While higher order reconstructions of
he source term 𝑃 are possible, they are not considered in this study
ecause finite volume methods for other terms are usually limited to
econd order (Xing and Shu, 2006). For simplicity, we denote the fluxes
valuated at the cell faces as

𝑖+1∕2 = (𝑣𝐺𝑛)||𝑥𝑖+1∕2 , 𝛬𝑖+1∕2 = 𝐷𝑔
𝜕𝑛 |

|

|

. (20)

𝜕𝑥

|𝑥𝑖+1∕2
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Therefore, Eq. (19) becomes

𝑛𝑖
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑖
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛,𝑖 − 𝐹𝑜𝑢𝑡𝑛𝑖 + 𝐵0𝑃𝑖𝑉

+
(

−
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

𝛥𝑥𝑖
+

𝛬𝑖+1∕2 − 𝛬𝑖−1∕2

𝛥𝑥𝑖

)

𝑉 .
(21)

Finite volume discretization of Eq. (2) is performed similarly and
ives

𝑛𝑖
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑖
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛,𝑖 − 𝐹𝑜𝑢𝑡𝑛𝑖

+
(

−
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

𝛥𝑥𝑖
+

𝛬𝑖+1∕2 − 𝛬𝑖−1∕2

𝛥𝑥𝑖

)

𝑉 .
(22)

Eqs. (21), (22) along with (9) are the implementation-ready gov-
rning equations of the 1D PBM, depending on the treatment of the
ucleation source term.

The diffusive flux is approximated by the central difference quotient
hich is second order on uniform grids

𝑖+1∕2 ≈ 𝛬̃𝑖+1∕2 = 𝐷𝑔
𝑛𝑖+1 − 𝑛𝑖
𝑥𝑖+1 − 𝑥𝑖

= 𝐷𝑔
𝑛𝑖+1 − 𝑛𝑖
𝛥′𝑥𝑖

, (23)

where 𝛥′𝑥𝑖 is the distance between the 𝑖th and (𝑖 + 1)th cell center
𝛥′𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖. On nonuniform grids, it becomes first order accurate.
Higher order approximation of the diffusive flux is possible (Nishikawa,
2014; Calhoun and LeVeque, 2000) and can be included in future
work, but it is not necessary since, in the most prevalent case where
particles are born as critical nuclei, the discretization order is limited
to a maximum second order due to the boundary treatment and to flux
limiting. Approximation of the convective flux 𝐹𝑖+1∕2 by the numerical
flux 𝐹𝑖+1∕2 is performed using several different schemes which are
discussed in the next section.

It is clear from Eq. (23) that one upwind and one downwind cell
must be evaluated to estimate the numerical diffusive flux 𝛬̃𝑖+1∕2. A
natural problem occurs when dealing with cells located at the domain
boundaries: to evaluate the first cell, for instance, the average number
density in the zeroth cell, which does not exist, is required. Therefore,
cells at the domain boundaries must be evaluated using the boundary
conditions. At the domain boundaries where 𝑖 = 1 and 𝑖 = 𝑁𝑥, Eq. (21)
reads

𝑛1
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛1
𝜕𝑡

=

(

−
𝐹3∕2

𝛥𝑥1
+

𝛬̃3∕2

𝛥𝑥1

)

𝑉 + 𝐵0𝑃1𝑉 ,

𝑛𝑁𝑥

𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑁𝑥

𝜕𝑡
=

(

𝐹𝑁𝑥−1∕2

𝛥𝑥𝑁𝑥

−
𝛬̃𝑁𝑥−1∕2

𝛥𝑥𝑁𝑥

)

𝑉 ,

after replacing the exact fluxes with their numerical counterparts.
Similarly, if particles are born as critical nuclei, Eq. (22) gives

𝑛1
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛1
𝜕𝑡

=

(

𝐹3∕2 − 𝐵0

𝛥𝑥1
+

𝛬̃3∕2

𝛥𝑥1

)

𝑉 ,

𝑛𝑁𝑥

𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑁𝑥

𝜕𝑡
=

(

𝐹𝑁𝑥−1∕2

𝛥𝑥𝑁𝑥

−
𝛬̃𝑁𝑥−1∕2

𝛥𝑥𝑁𝑥

)

𝑉 .

These are the final equations for cells near the boundary of the 𝑥
domain to be implemented for the 1D PBM in CADET, depending on
the nature of the nucleation.

Finally, we discretize the accompanying solute mass balance equa-
tion. The integral in the mass balance equation is first truncated from
infinity to 𝑥𝑚𝑎𝑥 and then approximated by the midpoint quadrature
rule. The mass balance Eqs. (7) and (8) give, respectively:

𝑐 𝜕𝑉
𝜕𝑡

+ 𝑉 𝜕𝑐
𝜕𝑡

= 𝐹𝑖𝑛𝑐𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑐

−𝜌𝑘𝑣𝑉
𝑁𝑥
∑

𝑗=1

(

𝐵0𝑃𝑗𝑥
3
𝑗𝛥𝑥𝑗 + 3𝑣𝐺,𝑗𝑛𝑗𝑥

2
𝑗𝛥𝑥𝑗

)

,

𝑐 𝜕𝑉
𝜕𝑡

+ 𝑉 𝜕𝑐
𝜕𝑡

= 𝐹𝑖𝑛𝑐𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑐 − 𝜌𝑘𝑣𝑉

(

𝐵0𝑥
3
𝑐 + 3

𝑁𝑥
∑

𝑣𝐺,𝑗𝑛𝑗𝑥
2
𝑗𝛥𝑥𝑗

)

,

(24)
5

𝑗=1
where 𝑣𝐺,𝑗 = 𝑘𝑔𝑠𝑔(𝑎 + 𝛾𝑥𝑗 )𝑝. Note that 𝐵0 contains another integral
present in 𝑀 , which is also approximated using a midpoint quadrature
ule: 𝑀 ≈ 𝜌𝑘𝑣

∑𝑁𝑥
𝑗=1 𝑛𝑗𝑥

3
𝑗𝛥𝑥𝑗 .

3.2. Two dimensional discretization: internal coordinate 𝑥 and external
coordinate 𝑧

In this section, we apply the finite volume method to the 2D PBM
for a DPFR (Eqs. (10) and (12)). A basic assumption we make from here
on is that, except for the number density 𝑛, parameters and variables
formulated in one coordinate are not explicitly dependent on the other
coordinate such that the governing equation can be discretized in the
two coordinates separately. For instance, the primary nucleation kinet-
ics 𝐵𝑝(𝑥, 𝑧) = 𝑘𝑝𝑠𝑢 does not explicitly depend on the axial coordinate 𝑧,
ut only implicitly through the depletion of the relative supersaturation
, which does depend on the axial position. Bearing this assumption
n mind, the internal coordinate 𝑥 can be discretized as introduced in
he section above. The external coordinate 𝑧 is analogously discretized
s: 0 = 𝑧1∕2 < 𝑧3∕2 < ⋯ < 𝑧𝑁𝑐𝑜𝑙−1∕2 < 𝑧𝑁𝑐𝑜𝑙+1∕2 = 𝐿, where 𝑁𝑐𝑜𝑙 is
he total number of cells for the external domain 𝑧. The size, center
nd distance between two adjacent centers in the external coordinate
ells are defined similarly to those in the internal coordinate: 𝛥𝑧𝑗 =
𝑗+1∕2 − 𝑧𝑗−1∕2, 𝑧𝑖 = (𝑧𝑖+1∕2 + 𝑧𝑖−1∕2)∕2, 𝛥′𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖.

To derive the discretized versions of the governing equations for the
D PBM described by Eqs. (10) and (12), we define the two dimensional
ell average as

𝑖,𝑗 =
1

𝛥𝑥𝑖𝛥𝑧𝑗 ∫

𝑧𝑗+1∕2

𝑧𝑗−1∕2
∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2
𝑛 d𝑥 d𝑧,

here the first subscript 𝑖 is the index for elements in the 𝑥 coordinate
nd the second subscript 𝑗 is the index for elements in the 𝑧 coor-
inate. Performing the steps presented in the preceding section, the
orresponding implementation-ready discretized 2D PBMs are:

𝜕𝑛𝑖,𝑗
𝜕𝑡

= −
𝐹𝑖,𝑗+1∕2 − 𝐹𝑖,𝑗−1∕2

𝛥𝑧𝑗
+

𝛬̃𝑖,𝑗+1∕2 − 𝛬̃𝑖,𝑗−1∕2

𝛥𝑧𝑗

−
𝐹𝑖+1∕2,𝑗 − 𝐹𝑖−1∕2,𝑗

𝛥𝑥𝑖
+

𝛬̃𝑖+1∕2,𝑗 − 𝛬̃𝑖−1∕2,𝑗

𝛥𝑥𝑖
+ 𝐵0,𝑗𝑃𝑖,

(25)

nd
𝜕𝑛𝑖,𝑗
𝜕𝑡

= −
𝐹𝑖,𝑗+1∕2 − 𝐹𝑖,𝑗−1∕2

𝛥𝑧𝑗
+

𝛬̃𝑖,𝑗+1∕2 − 𝛬̃𝑖,𝑗−1∕2

𝛥𝑧𝑗

−
𝐹𝑖+1∕2,𝑗 − 𝐹𝑖−1∕2,𝑗

𝛥𝑥𝑖
+

𝛬̃𝑖+1∕2,𝑗 − 𝛬̃𝑖−1∕2,𝑗

𝛥𝑥𝑖
,

(26)

where the convective and diffusive numerical fluxes for the internal
coordinate, 𝐹𝑖+1∕2,𝑗 and 𝛬̃𝑖+1∕2,𝑗 , are defined as in the previous section
and approximate the exact fluxes of Eq. (20) at 𝑧 = 𝑧𝑗 . 𝐵0,𝑗 denotes 𝐵0
evaluated at 𝑧 = 𝑧𝑗 . The analogous numerical fluxes for the external
coordinate 𝐹𝑖,𝑗+1∕2 and 𝛬̃𝑖,𝑗+1∕2 are, respectively, defined by

𝐹𝑖,𝑗+1∕2 ≈ 𝐹𝑖,𝑗+1∕2 = (𝑣𝑎𝑥𝑛)||𝑥𝑖 ,𝑧𝑗+1∕2 , (27)

nd

̃𝑖,𝑗+1∕2 = 𝐷𝑎𝑥
𝑛𝑖,𝑗+1 − 𝑛𝑖,𝑗

𝛥′𝑧𝑗
≈ 𝛬𝑖,𝑗+1∕2 =

𝜕𝑛
𝜕𝑧

|

|

|

|𝑥𝑖 ,𝑧𝑗+1∕2
, (28)

here, again, the convective numerical flux 𝐹𝑖,𝑗+1∕2 is described in the
ext section.

Cells near the domain boundary require special treatment. To fa-
ilitate discussion, the 2D discretization scheme, numerical fluxes at
he cell faces, and line sources for the 2D PBM are shown graphically
n Fig. 1. For 2D problems, there are in total eight special cases
epresenting four vertical and horizontal lines that are the boundary
onditions for each coordinate and four points at the intersections of
hese lines: 𝜕𝑛𝑖,1

𝜕𝑡 ,
𝜕𝑛𝑖,𝑁𝑐𝑜𝑙

𝜕𝑡 , 𝜕𝑛1,𝑗
𝜕𝑡 , 𝜕𝑛𝑁𝑥,𝑗

𝜕𝑡 , 𝜕𝑛1,1
𝜕𝑡 ,

𝜕𝑛1,𝑁𝑐𝑜𝑙
𝜕𝑡 , 𝜕𝑛𝑁𝑥,1

𝜕𝑡 , and
𝜕𝑛𝑁𝑥,𝑁𝑐𝑜𝑙

𝜕𝑡 .
Their corresponding expressions are derived in a way similar to that
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Fig. 1. The regular quadrilateral grid for the two-dimensional cell-centered FVM flux reconstruction. The growth and axial convection numerical fluxes at the cell faces are
unidirectional and denoted by longer arrows. Axial dispersion and growth rate dispersion are bidirectional and denoted by smaller double arrows.
in the last section. To avoid redundancy, they are provided in the
supplementary information (SI).

The mass balance equation has only one spatial coordinate 𝑧. Ac-
cordingly, the discretized mass balance Eqs. (14) and (15) read

𝜕𝑐𝑗
𝜕𝑡

= −
𝐹 ′
𝑗+1∕2 − 𝐹 ′

𝑗−1∕2

𝛥𝑧𝑗
+

𝛬̃′
𝑗+1∕2 − 𝛬̃′

𝑗−1∕2

𝛥𝑧𝑗

−𝜌𝑘𝑣
𝑁𝑥
∑

𝑗=1

(

𝐵0,𝑗𝑃𝑗𝑥
3
𝑗𝛥𝑥𝑗 + 3𝑣𝐺,𝑗𝑛𝑗𝑥

2
𝑗𝛥𝑥𝑗

)

,

(29)

and

𝜕𝑐𝑗
𝜕𝑡

= −
𝐹 ′
𝑗+1∕2 − 𝐹 ′

𝑗−1∕2

𝛥𝑧𝑗
+

𝛬̃′
𝑗+1∕2 − 𝛬̃′

𝑗−1∕2

𝛥𝑧𝑗

−𝜌𝑘𝑣

(

𝐵0,𝑗𝑥
3
𝑐 + 3

𝑁𝑥
∑

𝑖=1
𝑣𝐺,𝑖𝑛𝑖𝑥

2
𝑖 𝛥𝑥𝑖

)

,

(30)

where the numerical convective and diffusive fluxes in the spatial
coordinate 𝐹 ′

𝑗+1∕2 and 𝛬̃′
𝑗+1∕2 are defined by

𝐹 ′
𝑗+1∕2 ≈ (𝑣𝑎𝑥𝑐𝑗 )

|

|

|𝑧𝑗+1∕2
, (31)

and

𝛬̃′
𝑗+1∕2 = 𝐷𝑎𝑥

𝑐𝑗+1 − 𝑐𝑗
𝛥′𝑧𝑗

≈ 𝐷𝑎𝑥
𝜕𝑐𝑗
𝜕𝑧

|

|

|

|

|𝑧𝑗+1∕2

, (32)

where the superscript ′ is used to further distinguish 𝐹 ′
𝑗+1∕2 and 𝛬̃′

𝑗+1∕2
from 𝐹𝑖,𝑗+1∕2 and 𝛬̃𝑖,𝑗+1∕2. Cells near the domain boundaries are treated
similarly to the description above and can be found in the SI.

4. Flux reconstruction on uniform and nonuniform grids

In this section, we introduce the methods used to estimate the nu-
merical convective flux 𝐹𝑖+1∕2. While the development below employs 𝑛
to illustrate the algorithms for use in the 1D and 2D population balance
equations, 𝑛 may be exchanged for 𝑐 for use in the associated mass
balance equation.

4.1. Upwind scheme

When using an upwind scheme, 𝐹𝑖+1∕2 can be directly calculated
from the cell average of an upwind cell:

𝐹 = 𝐹 = 𝑣 𝑛 (33)
6

𝑖+1∕2 𝑢𝑝𝑤𝑖𝑛𝑑,𝑖+1∕2 𝐺,𝑖+1∕2 𝑖
where 𝑣𝐺,𝑖+1∕2 is given by:

𝑣𝐺,𝑖+1∕2 = 𝑘𝑔𝑠
𝑔(𝑎 + 𝛾𝑥𝑖+1∕2)𝑝 (34)

This scheme displays first-order accuracy. For numerical flux re-
construction using the above equations, one upwind cell is evaluated
at each time step for the convective flux (Eq. (33)). Treatment of
the cells at the domain boundaries was described in the previous
section. The upwind scheme is independent of the grid structure and
does not require adjustment when extending from a uniform grid to a
nonuniform grid.

4.2. High-resolution scheme by Koren

We also implemented and tested a representative high-resolution
(HR) scheme developed by Barry (1993). There are other HR schemes
available, including a very popular second order high-resolution scheme
tested by Gunawan et al. (2004) that was based on LeVeque’s analysis
of hyperbolic equations (LeVeque, 2002). This popular scheme resem-
bles an upwind flux plus a diffusive flux that is purposely chosen to
exactly match the second term of the Taylor expansion of the growth
term using a central finite difference method. Unfortunately, we could
not implement this scheme in CADET because the diffusive flux term
requires a fixed step size in time, which is incompatible with the
adjustable time step size used in the BDF time integrator. The Koren
HR scheme is also second-order accurate but does not require fixed
time step sizes, making it compatible with CADET.

According to Koren’s HR scheme (Barry, 1993), the convective flux
on a uniform grid (𝛥𝑥𝑖 = 𝛥𝑥) reads as

𝐹𝑖+1∕2 = 𝐹𝐻𝑅,𝑖+1∕2 = 𝑣𝐺,𝑖+1∕2

(

𝑛𝑖 +
1
2
𝛷𝑖+1∕2(𝑛𝑖+1 − 𝑛𝑖)

)

, (35)

where 𝛷𝑖+1∕2 is the van Leer flux limiting function and 𝑣𝐺,𝑖+1∕2 is given
by Eq. (34). This scheme originated in van Leer’s 𝜅 zerowise Legendre
polynomial interpolation applied to the cell average 𝑛𝑖 where 𝜅 is a
parameter that can be chosen to give purely linear (𝜅 = 0) or quadratic
(𝜅 = 1∕3) interpolation (van Leer, 1985). Koren showed that van Leer’s
original 𝜅 = 1∕3 scheme was equivalent to Eq. (35) with

𝛷𝑖+1∕2 = 𝛷𝑜𝑟𝑖,𝑖+1∕2 =
1
3
+ 2

3
𝑟𝑖+1∕2, 𝑟𝑖+1∕2 =

𝑛𝑖 − 𝑛𝑖−1
𝑛𝑖+1 − 𝑛𝑖

This scheme is globally a formal second order scheme with no flux
limiting. Following Sweby’s monotonicity theory, the scheme becomes
total variation diminishing (TVD) by limiting the flux to satisfy the
corresponding TVD properties. Various limiting functions have been
proposed such as the van Leer, Superbee and minmod etc., but the van
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Leer flux limiting function used in this study was chosen on the basis
of preliminary studies by other authors who reported good results with
this limiter (Gunawan et al., 2004; Qamar et al., 2009, 2006; Kumar
et al., 2008). The van Leer flux limiter is defined as

𝛷𝑖+1∕2 =
𝑟𝑖+1∕2 + |𝑟𝑖+1∕2|
1 + |𝑟𝑖+1∕2|

, 𝑟𝑖+1∕2 =
𝑛𝑖 − 𝑛𝑖−1 + 𝜀
𝑛𝑖+1 − 𝑛𝑖 + 𝜀

. (36)

Here, 𝑟𝑖+1∕2 is a local smoothness monitor for the cell face 𝑥𝑖+1∕2
and 𝜀 > 0 is a small number used to avoid division by zero when the
solution is smooth. The van Leer flux limiter 𝛷𝑖+1∕2 uses the monitor
function 𝑟𝑖+1∕2 to detect the smoothness near the cell face 𝑥𝑖+1∕2 by
evaluating the ratio of upwind and downwind slopes. For 𝑟𝑖+1∕2 < 0,
the slopes have opposing signs, i.e. a local extremum is detected and
the scheme is locally reduced to a first order upwind flux (i.e. 𝛷 = 0)
o remain TVD. When 0 < 𝑟𝑖+1∕2 < 1, the approximated function in
he downwind region is smoother than in the upwind region and vice
ersa for 1 < 𝑟𝑖+1∕2 < 2. Here, the limiting function yields a weighted
lux reconstruction to stay within the TVD boundaries. If the local
lope is constant, i.e. 𝑟𝑖+1∕2 = 1, the scheme becomes an unlimited 2nd

rder central difference scheme. Overall, the limiter avoids spurious
scillations by balancing the cell face flux approximation between a
irst order accurate and a second order accurate scheme depending on
he smoothness of the solution.

The van Leer flux limiter evaluates two upwind cells and one
ownwind cell for each flux at each time step. For the cells at the
omain boundaries, the flux needs to be reconstructed differently. The
luxes 𝐹1∕2 and 𝐹𝑁𝑥+1∕2 are defined by the corresponding boundary con-
itions, as described in Section 3, while an upwind scheme (Eq. (33))
s used for 𝐹1∕2.

It is important to note that the algorithms presented above are only
pplicable on uniform grids. On nonuniform grids, unintended limiting
ould reduce the overall accuracy of the HR scheme. Consider a linear
olution with slope 𝑠 and a nonuniform grid with a stretching ratio of
= 3∕2 such that 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2 = 𝑎(𝑥𝑖−1∕2 − 𝑥𝑖−3∕2). The van Leer

moothness monitor becomes: 𝑟𝑖+1∕2 = (𝑛𝑖 − 𝑛𝑖−1 + 𝜀)∕(𝑛𝑖+1 − 𝑛𝑖 + 𝜀) =
𝑠 ⋅ (𝑥𝑖−1∕2 − 𝑥𝑖−3∕2))∕(𝑠 ⋅ (𝑥𝑖+1∕2 − 𝑥𝑖−1∕2)) = 1∕𝑎 = 2∕3. The van Leer flux
imiter results in 𝛷 = 0.8, sharpening the solution despite the fact that
o limiting is required.

To address this issue, we implement and test a modified van Leer
lux limiter proposed by Hou et al. (2012):

𝛷𝑀,𝑖+1∕2 =
1
2𝑅𝑖+1∕2𝑟𝑀,𝑖+1∕2 +

1
2𝑅𝑖+1∕2|𝑟𝑀,𝑖+1∕2|

𝑅𝑖+1∕2 + 𝑟𝑀,𝑖+1∕2 − 1

𝑀,𝑖+1∕2 =
𝑛𝑖 − 𝑛𝑖−1 + 𝜀
𝑛𝑖+1 − 𝑛𝑖 + 𝜀

⋅
𝛥𝑥𝑖+1 + 𝛥𝑥𝑖
𝛥𝑥𝑖 + 𝛥𝑥𝑖−1

, 𝑅𝑖+1∕2 =
𝛥𝑥𝑖+1 + 𝛥𝑥𝑖

𝛥𝑥𝑖

(37)

and the flux on a nonuniform grid is updated to

𝐹𝑖+1∕2 = 𝐹𝐻𝑅𝑀,𝑖+1∕2 = 𝑣𝐺,𝑖+1∕2

(

𝑛𝑖 +
𝛷𝑀,𝑖+1∕2

𝑅𝑖+1∕2
(𝑛𝑖+1 − 𝑛𝑖)

)

(38)

This modification is based on the use of scaling factors to adjust
the smoothness monitor and limiting function. On a uniform grid, the
modified van Leer flux limiter coincides with the unmodified form.

4.3. Weighted essentially non-oscillatory scheme

The weighted essentially non-oscillatory (WENO) reconstruction
scheme avoids the use of flux limiters. It was first proposed by Liu et al.
(1994) as an improvement of the ENO scheme developed by Harten
et al. (1987), and then further improved by Jiang and Shu (1996). The
underlying idea of the WENO scheme is to use a convex combination of
lower order approximations based on 𝑟 stencils {𝑥𝑖−𝑟+1,… , 𝑥𝑖+𝑟−1} with
ach assigned a weight to achieve (2𝑟 − 1)th order accuracy in smooth
egions. The numerical flux is given by:

𝑖̃+1∕2 = 𝐹𝑊𝐸𝑁𝑂(2𝑟−1),𝑖+1∕2 = 𝑣𝐺,𝑖+1∕2

𝑟−1
∑

𝑊𝑚𝑞
(𝑟)
𝑚 (39)
7

𝑚=0
here 𝑣𝐺,𝑖+1∕2 is defined in Eq. (34), 𝑊𝑚 and 𝑞(𝑟)𝑚 are the weights and
olynomials for the 𝑚th stencil, respectively.

The weights are chosen in such a way that 1. near a discontinuity it
s essentially zero to avoid using that stencil; 2. it is a smooth function
f the cell averages involved and 3. the weights are computationally
fficient. According to Shu (1998), weights that satisfy the above
equirements are given by

𝑚 =
𝛼𝑚

∑𝑟−1
𝑘=0 𝛼𝑘

. (40)

The weighting parameter 𝛼𝑚 depends on a smoothness indicator
𝐼𝑆(𝑟)

𝑚 :

𝛼𝑚 =
𝐶 (𝑟)
𝑚

(

𝐼𝑆(𝑟)
𝑚 + 𝜀

)𝑝 , (41)

where 𝑝 = 2 as suggested by Jiang and Shu (1996). The parameter
𝜀 > 0 is a small quantity originally introduced to avoid division by
zero, but was later shown to impact the convergence order (Cravero
and Semplice, 2016; Aràndiga et al., 2011). We implemented a grid-
dependent 𝜀 = 𝛥𝑥𝑖 as suggested by Cravero and Semplice (2016).
This choice was shown by Cravero and Semplice (2016) to preserve
the convergence rate while providing better shock-capturing capability
compared with a constant 𝜀.

The coefficients 𝐶𝑚 are chosen such that (2𝑟 − 1)th order accuracy
is achieved in smooth regions as expressed by the identity

𝑞(2𝑟−1)𝑟−1 =
𝑟−1
∑

𝑚=0
𝐶 (𝑟)
𝑚 𝑞(𝑟)𝑚 ,

here ∑𝑟−1
𝑚=0 𝐶

(𝑟)
𝑚 = 1.

Lastly, the smoothness indicators are designed to be a measure of
he total variation of the reconstruction polynomials inside each stencil:

𝑆(𝑟)
𝑚 =

𝑟−1
∑

𝑘=1

(

𝛥𝑥2𝑘−1𝑖 ∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2

(

𝜕𝑘𝑛
𝜕𝑘𝑥

)2
d𝑥

)

,

here −1 < 𝑚 < 𝑟. These indicators are a sum of the squares of the
caled L2 norm for all derivatives of the interpolation polynomials.

On a uniform grid, all coefficients are constant, which greatly
implifies the algorithm. We are mainly interested in the cases where
= 2 and 𝑟 = 3. Denoting 𝑞(𝑟)𝑚 and 𝐶 (𝑟)

𝑚 evaluated at 𝑥𝑖+1∕2 as 𝑞(𝑟−)𝑚 and
𝐶 (𝑟−)
𝑚 , the polynomials 𝑞(𝑟)𝑚 read

𝑞(2−)0 = 1
2
𝑛𝑖 +

1
2
𝑛𝑖+1, 𝑞(2−)1 = −1

2
𝑛𝑖−1 +

3
2
𝑛𝑖;

𝑞(3−)0 = 1
3
𝑛𝑖 +

5
6
𝑛𝑖+1 −

1
6
𝑛𝑖+2, 𝑞

(3−)
1 = −1

6
𝑛𝑖−1 +

5
6
𝑛𝑖 +

1
3
𝑛𝑖+1,

𝑞(3−)2 = 1
3
𝑛𝑖−2 −

7
6
𝑛𝑖−1 +

11
6
𝑛𝑖.

(42)

The parameters 𝐶 (𝑟)
𝑚 are given by

𝐶 (2−)
0 = 2∕3, 𝐶 (2−)

1 = 1∕3,

𝐶 (3−)
0 = 3∕10, 𝐶 (3−)

1 = 6∕10, 𝐶 (3−)
2 = 1∕10.

(43)

The smoothness indicators 𝐼𝑆(𝑟)
𝑚 are given by

𝐼𝑆(2)
0 = (𝑛𝑖+1 − 𝑛𝑖)2, 𝐼𝑆(2)

1 = (𝑛𝑖 − 𝑛𝑖−1)2,

𝑆(3)
0 = 13

12
(𝑛𝑖 − 2𝑛𝑖+1 + 𝑛𝑖+2)2 +

1
4
(3𝑛𝑖 − 4𝑛𝑖+1 + 𝑛𝑖+2)2,

𝐼𝑆(3)
1 = 13

12
(𝑛𝑖−1 − 2𝑛𝑖 + 𝑛𝑖+1)2 +

1
4
(𝑛𝑖−1 − 𝑛𝑖+1)2,

𝐼𝑆(3)
2 = 13

12
(𝑛𝑖−2 − 2𝑛𝑖−1 + 𝑛𝑖)2 +

1
4
(𝑛𝑖−2 − 4𝑛𝑖−1 + 3𝑛𝑖)2.

(44)

WENO23 (𝑟 = 2) evaluates two upwind and one downwind cells,
while WENO35 (𝑟 = 3) evaluates three upwind and two downwind
cells. For WENO23, an upwind scheme is applied to 𝐹1∕2. For WENO35,
WENO23 is applied to 𝐹3∕2 and 𝐹𝑁𝑥−3∕2 while an upwind scheme is
applied to 𝐹 .
1∕2
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On a nonuniform grid, all coefficients are dependent on the grid
structure. For the cases 𝑟 = 2 and 𝑟 = 3, Smit et al. (2005) reported
their explicit formula as a function of the grid structure. We have
simplified the equations and summarized them below. The polynomials
𝑞(𝑟)𝑚 , optimal weights 𝐶 (𝑟)

𝑚 and the smoothness indicators 𝐼𝑆(𝑟)
𝑚 evaluated

at 𝑥𝑖+1∕2 for WENO23 are given by

𝑞(2−)0 =
𝛥𝑥𝑖+1

𝛥𝑥𝑖 + 𝛥𝑥𝑖+1
𝑛𝑖 +

𝛥𝑥𝑖
𝛥𝑥𝑖 + 𝛥𝑥𝑖+1

𝑛𝑖+1,

𝑞(2−)1 = (1 +
𝛥𝑥𝑖

𝛥𝑥𝑖−1 + 𝛥𝑥𝑖
)𝑛𝑖 −

𝛥𝑥𝑖
𝛥𝑥𝑖−1 + 𝛥𝑥𝑖

𝑛𝑖−1,

(2−)
0 =

𝛥𝑥𝑖−1 + 𝛥𝑥𝑖
𝛥𝑥𝑖−1 + 𝛥𝑥𝑖 + 𝛥𝑥𝑖+1

, 𝐶 (2−)
1 =

𝛥𝑥𝑖+1
𝛥𝑥𝑖−1 + 𝛥𝑥𝑖 + 𝛥𝑥𝑖+1

,

𝐼𝑆(2)
0 = (

2𝛥𝑥𝑖
𝛥𝑥𝑖 + 𝛥𝑥𝑖+1

)2(𝑛𝑖+1 − 𝑛𝑖)2,

𝐼𝑆(2)
1 = (

2𝛥𝑥𝑖
𝛥𝑥𝑖−1 + 𝛥𝑥𝑖

)2(𝑛𝑖 − 𝑛𝑖−1)2.

(45)

The symbolic expressions for 𝑞(3−)0 , 𝑞(3−)1 , 𝑞(3−)2 , 𝐶 (3−)
0 , 𝐶 (3−)

1 , 𝐶 (3−)
2 ,

𝐼𝑆(3)
0 , 𝐼𝑆(3)

1 and 𝐼𝑆(3)
2 corresponding to the WENO35 scheme on a

nonuniform grid are rather complicated despite our simplifications. For
conciseness, they are reported in the SI.

5. Time integrator

After the discretization in space, we obtain an initial value problem
(IVP) for a large system of ODEs that is solved in implicit form:

𝐹 (𝑡, 𝑦, 𝑦̇) = 0, 𝑦(0) = 𝑦0, 𝑦̇(0) = 𝑦0,

where 𝑦 is the state vector, 𝑦̇ = 𝑑𝑦∕𝑑𝑡; the initial values of 𝑦0 and
𝑦0 must be consistent. The resulting ODE system can be a stiff system
for three main reasons. First, the nucleation term can lead to a sharp
front in the solution which is hard for the time integrator to resolve.
Second, the growth rate may be highly nonlinear when size-dependent
growth mechanisms are considered. Third, the dispersive second order
term can also cause stiffness. When using explicit ODE routines, the
time step size must be carefully chosen to ensure stability (and hence
convergence). For stiff problems, explicit time steps sizes are typically
limited by stability constraints rather than accuracy, which significantly
increases computational demands. To avoid this problem, we inte-
grate the system in time using an implicit variable-step/variable-order
backward differential formula (BDF)

𝑦̇(𝑡𝜏 ) =
1
𝛥𝑡𝜏

𝑞𝜏
∑

𝑖=0
𝛼𝜏,𝑖𝑦(𝑡𝜏−𝑖),

where 𝑞𝜏 is the order, 𝑡𝜏 is the time at step 𝜏 = 1, 2,… , and 𝛥𝑡𝜏 is
he time step size. Step size and order are adaptively changed, with
he order ranging from one to five. The coefficient 𝛼𝜏,𝑖 is uniquely
etermined from the history of step sizes and order. The BDF is im-
lemented in the implicit differential–algebraic solver (IDA) package
n the suite of non-linear and differential–algebraic equation solvers
SUNDIALS) (Woodward and Balos, 2021). It is a robust and efficient
ime integrator designed for large, stiff ODE systems.

Application of the BDF to the IVP gives a nonlinear algebraic
quation that needs to be solved at each time step 𝜏:

(𝑦𝜏 ) = 𝐹

(

𝑡𝜏 , 𝑦𝜏 ,
1
𝛥𝑡𝜏

𝑞𝜏
∑

𝑖=0
𝛼𝜏,𝑖𝑦(𝑡𝜏−𝑖)

)

= 0. (46)

By default, IDA uses Newton iteration to solve this equation. During
each Newton iteration, the solution of a linear system is required

J(𝑦𝑚+1𝜏 − 𝑦𝑚𝜏 ) = −𝐺(𝑦𝑚𝜏 ), (47)

where 𝑦𝑚𝜏 is the 𝑚th approximation to 𝑦𝜏 , 𝐺 is a vector-valued residual
and J is an approximation of the system Jacobian

J ≈ 𝜕𝐺 = 𝜕𝐹 +
𝛼𝜏,0 𝜕𝐹 .
8

𝜕𝑦 𝜕𝑦 𝛥𝑡𝜏 𝜕𝑦̇
Most of the runtime is consumed when solving Eqs. (46) and (47)
repeatedly. One of the most burdensome tasks is the generation of the
Jacobian. CADET can use automatic differentiation (AD) in forward
mode as implemented in a previous release to generate the Jacobian:
the computation of the Jacobian matrix with respect to the vector
that contains the state variables 𝑦 is broken down into a sequence
of elementary arithmetic operations and elementary functions which
can be automatically calculated based on the chain rule. However,
computing the Jacobian using the chain rule repeatedly and storing
and accessing it in the computer memory requires computational effort
that inevitably slows down the simulations. To reduce the runtime, we
supplement the solver with an analytical Jacobian:

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐺𝑐
𝜕𝑐

𝜕𝐺𝑐
𝜕𝑛1

⋯
𝜕𝐺𝑐
𝜕𝑛𝑁𝑥

𝜕𝐺𝑐
𝜕𝑐𝑒𝑞

𝜕𝐺1
𝜕𝑐

𝜕𝐺1
𝜕𝑛1

⋯
𝜕𝐺1
𝜕𝑛𝑁𝑥

𝜕𝐺1
𝜕𝑐𝑒𝑞

⋮ ⋱ ⋮
⋮ ⋱ ⋮

𝜕𝐺𝑁𝑥

𝜕𝑐

𝜕𝐺𝑁𝑥

𝜕𝑛1
⋯

𝜕𝐺𝑁𝑥

𝜕𝑛𝑁𝑥

𝜕𝐺𝑁𝑥

𝜕𝑐𝑒𝑞
𝜕𝐺𝑐𝑒𝑞

𝜕𝑐

𝜕𝐺𝑐𝑒𝑞

𝜕𝑛1
⋯

𝜕𝐺𝑐𝑒𝑞

𝜕𝑛𝑁𝑥

𝜕𝐺𝑐𝑒𝑞

𝜕𝑐𝑒𝑞

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (48)

where 𝐺𝑐 is the residual for the mass balance, 𝐺𝑖, 𝑖 ∈ {1,… , 𝑁𝑥}, is
the residual for 𝑛𝑖 and 𝐺𝑐𝑒𝑞 is the residual for the solubility pseudo-
component. The symbolic expressions for the Jacobian are dependent
on the schemes and are complicated. For conciseness, they are given
in the SI. The correctness of the analytical Jacobian was checked by
comparing it against a Jacobian matrix obtained by AD (Püttmann
et al., 2016).

6. Implementation and numerical experiments

The discretized 1D and 2D governing equations are implemented
and solved in the modular, free and open-source process modeling
software package CADET (von Lieres and Andersson, 2010; Leweke
and von Lieres, 2018). CADET supports several platforms, including
Windows, Linux, and Mac OS. The numerical core is written in C++
and provides a Python interface and frontend. CADET was originally
developed as a fast and accurate numerical solver for mechanistic
modeling in chromatography, including consistent initialization. In
recent years, it has been actively developed and extended to tackle
numerical challenges in other fields. Implementation of the PBM in
CADET has several advantages: 1. CADET supports mathematical mod-
els and dedicated solvers for other important unit operations, including
chromatography and filtration. The implemented model family also
covers valves, switches, and tubes to model effects that are external
to the reactor (or column). The output of the PBM can be directly
linked to these units for integrated simulations of processes that consist
of multiple unit operations; 2. Existing infrastructure was reused to
allow, for example, efficient computation of parameter sensitivities via
AD (Püttmann et al., 2013). The Python frontend provides a variety
of tools to solve typical engineering tasks, such as model calibration,
process optimization, and uncertainty quantification. 3. By making the
methods and results of this work publicly available in a continuously
developed and maintained open-source software, it becomes a lasting
contribution.

The implementation of the previously introduced algorithms is vali-
dated using seven test cases. Approximation error and solver efficiency
are analyzed and benchmarked for all these cases. Analytical solu-
tions were used when available. Otherwise, numerical solutions on
fine grids were used as reference solutions. For nonuniform grids, the
intermediate points of the distribution are interpolated using univariate
splines. All tests and benchmarks are performed on a 3600 MHz AMD
Ryzen(TM) Threadripper(TM) with 32 cores and 64 threads. Unless

otherwise specified in the test cases, analytical Jacobians are used and
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IDA is configured so that the initial time step size is 10−6, the relative
tolerance is 10−7, and the absolute tolerance is 10−7.

We calculate the normalized L1 norm to measure the difference
etween two solutions:

𝑓‖𝐿1 =
∑𝑁𝑥

𝑖=1 𝛥𝑥𝑖|𝑛
(numerical)
𝑖 − 𝑛(reference)

𝑖 |

∑𝑁𝑥
𝑖=1 𝛥𝑥𝑖𝑛

(reference)
𝑖

. (49)

The experimental order (rate) of convergence based on L1 norm for the
internal coordinate 𝑥 is calculated using

EOC𝐿1 = 𝑙𝑜𝑔𝑁 (B)
𝑥 ∕𝑁 (A)

𝑥

⎛

⎜

⎜

⎝

‖𝑓‖(A)
𝐿1

‖𝑓‖(B)
𝐿1

⎞

⎟

⎟

⎠

(50)

here 𝐴 and 𝐵 represent two independent simulations and 𝑁𝑥 is
he total number of cells for the particle space. We also analyze the
uality of the numerical solution by comparing the moments of the
istributions. The discrete 𝑝th moment 𝑀𝑝 is given by

𝑝 =
𝑁𝑥
∑

𝑖=0
𝑥𝑝𝑖 𝑛𝑖𝛥𝑥𝑖. (51)

he volume fraction is defined as 𝑉𝑖 = 𝑛𝑖𝑥3𝑖 𝛥𝑥𝑖∕𝑀3.
The test cases are organized as follows: cases 1 to 5 demonstrate the

uccessful implementation of one of the terms of the 1D- or 2D-PBM
ecoupled from the mass balance equation. Cases 6 and 7 address the
D- or 2D-PBM coupled to the mass balance equation. Model parameter
alues used in these tests are reported in the SI.

.1. Case 1: size-independent growth

In this test, we validate our 1D PBM implementation with a size-
ndependent growth term and compare the effectiveness of the upwind,
R Koren, and WENO schemes. This test was also used by Motz et al.

2002) and Qamar et al. (2006). Consider a simple population balance
quation for a BSTR:
𝜕𝑛
𝜕𝑡

= −𝑣𝐺
𝜕𝑛
𝜕𝑥

with boundary condition 𝑛(0, 𝑡) = 0 and initial distribution:

𝑛(𝑥, 0) = 𝑛0(𝑥) =

{

1010 for 10 < 𝑥 < 20,
0 otherwise.

This case has the analytical solution 𝑛(𝑥, 𝑡) = 𝑛0(𝑥 − 𝑣𝐺𝑡): the initial
particle size distribution travels along the positive direction of the
𝑥 coordinate with rate 𝑣𝐺. Due to absence of nucleation and size-
independent growth processes, the size and shape of the distribution
remain constant. Because the mass balance is not considered, the
particles grow in size indefinitely.

Two initial distributions were considered: the first has a rectangular
shape with discontinuities. This provides a rigorous test for numerical
schemes and their implementation: the peak is sharp and the growth
rate is high, which together pose a challenge to the shock-capturing
capabilities of the schemes. The results are shown in Fig. 2. At 𝑡 = 10 s,
all schemes captured the sharp fronts relatively well. However, as time
increased to 𝑡 = 50 s, the solutions of all schemes spread out as a
result of the numerical dispersion. As expected, the upwind scheme
exhibited the largest numerical dispersion when using the same number
of cells 𝑁𝑥. The HR scheme performed better in capturing the sharp-
ness. WENO23 spread out more than the HR scheme but performed
much better than the upwind scheme. WENO35 outperformed all other
schemes but introduced minor overshoots. To quantitatively study the
differences between these schemes, further analyses on the convergence
rate and runtime were carried out. Fig. 2(b) shows the normalized
L1 norm as a function of the number of cells where the slope in the
log–log plot represents the rate (order) of convergence. All schemes
exhibited a first order convergence rate. Note that the rates of all the
9

high-order schemes were below their designed rates. This is expected as
the designed rate can only be achieved for smooth solutions. However,
WENO35 reached the highest convergence rate (0.8) and the smallest
error given the same number of cells. Fig. 2(c) reports the normalized
L1 norm versus runtime. Minimizing both error and runtime results in
a Pareto problem: points that are closest to the origin (0,0) are Pareto
optimal, and indicate the best algorithm to most efficiently achieve the
respective accuracy. For Pareto optimal points, one objective can only
be improved by impairing the other. All other points are dominated
by the Pareto front. In this case, the WENO35 scheme was obviously
Pareto optimal since it could achieve the smallest error for any given
runtime in the tested ranges.

The second initial distribution tested was a log-normal distribution:

𝑛0 = 𝑦0 +
𝐴

√

2𝜋𝑤𝑥
𝑒
−
(

ln 𝑥
𝑥𝑐𝑒

)2

2𝑤2 , (52)

here 𝑦0 = 0 is the offset, 𝐴 = 1010 is the area, 𝑤 = 0.3 is the width,
nd 𝑥𝑐𝑒 = 20 is the center of the seed distribution. Similar to the
irst distribution case, the higher-order schemes were superior to the
pwind scheme as time elapsed from 𝑡 = 10 s to 𝑡 = 50 s. As shown in
ig. 2(d) and quantified in Fig. 2(e), high-order schemes approximated
he analytical solution much better than the upwind scheme. Since the
og-normal distribution is smooth, the experimental convergence rates
f these schemes were much better than those for the discontinuous
istribution: the HR Koren scheme reached its maximum designed rate
f two, while the WENO23 and WENO35 rates were also within their
heoretical ranges between 2 and 3, and between 3 and 5, respectively.
he normalized L1 norm vs. runtime is reported in Fig. 2(f). Here, the
ENO35 scheme was again the best choice, as it dominated all other

chemes within the error range tested.
We further compare the performance of the schemes in terms of

he resulting calculated moments of the PSD which are of important
ractical use: the moments allow the calculation of common scalar
etrics of the distribution, such as the total particle count, the mean
article size, and the variance of the size distribution. In the above
ests, all schemes experienced numerical dispersion to a certain degree,
hich also raised questions about the accuracy of the moments. In
ig. 3(a), we compared the simulated and analytical moments for the
ectangular initial distribution case from the zeroth up to the sixth
rder. Since there is no nucleation source term in this test case, the total
ount of the particles is preserved and, hence, solely depends on the
nitial distribution. All schemes demonstrated an accurate prediction
f the zeroth order moment, i.e., conservation of the total count of the
articles. This is a conditio sine qua non because a correct implemen-
ation of the finite volume method must always preserve the zeroth
rder moment. However, the errors in other moments increased as the
rder increased with the largest error seen in the sixth order moment.
he upwind scheme showed the highest relative error of around 20%.
ENO23 was slightly inferior to the HR Koren scheme and WENO35

utperformed all other schemes with a maximum relative error of less
han 2.5% for all moments. Overall, higher order schemes worked
atisfactorily for all moments (relative error ≤ 5%) even when a modest
umber of cells was used.

.2. Case 2: size-dependent growth

In this test case we validate our implementation of a size-dependent
rowth term for a BSTR model. This case was also used by Gunawan
t al. (2004), Kumar and Ramkrishna (1997) and Qamar et al. (2006).
onsider a simple population balance equation

𝜕𝑛
𝜕𝑡

= −
𝜕(𝑣𝐺𝑛)
𝜕𝑥

with a growth rate that depends linearly on the particle size: 𝑣𝐺 =
𝐺,0𝑥. We assume that the initial distribution is given by 𝑛(𝑥, 0) =
0∕𝐿 × exp(−𝐿∕𝐿), where 𝑁0 is the total initial particle number

of size 𝐿 and 𝐿 is the mean size of the distribution. This scenario
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Fig. 2. Case 1: size-independent growth. Rectangular (top) and log-normal (bottom) initial distribution. (a), (d): numerical solutions and analytical references; (b), (e): normalized
L1 norm vs. number of cells at 𝑡 = 50 s; (c), (f): normalized L1 norm vs. runtime. AD was used in (c).

Fig. 3. Moment error analysis. 𝑁𝑥 = 100 is fixed. (a): Case 1: rectangular initial distribution at 𝑡 = 50 𝑠; (b): Case 4: P𝑒𝐺 = 10 and 𝑡 = 6 s.

Fig. 4. Case 2: size-dependent growth. (a): numerical solution vs. analytical solution; (b): normalized L1 norm vs. number of cells 𝑁𝑥 at 𝑡 = 4 s; (c): normalized L1 norm vs.
runtime.
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Fig. 5. Case 3: size-independent growth and nucleation. (a): numerical solution vs. analytical solution; (b): normalized L1 norm vs. number of cells 𝑁𝑥 at 𝑡 = 1000 s; (c): normalized
L1 norm vs. runtime.
has an analytical solution (Kumar and Ramkrishna, 1997): 𝑛(𝑥, 𝑡) =
𝑁0
𝐿

exp
[

− 𝑥
𝐿
𝑒−𝑣𝐺,0𝑡 − 𝑣𝐺,0𝑡

]

.
Fig. 4(a) shows that the results of all the numerical schemes im-

plemented were in excellent agreement with the analytical solution at
times 𝑡 = 2 s and 𝑡 = 4 s. Fig. 4(b) shows that the HR Koren and WENO
schemes converged with a rate of 2. Although the HR Koren scheme had
the same rate as the WENO schemes, it exhibited a higher normalized
L1 norm for the same number of cells. Fig. 4(c) shows that the HR Koren
and WENO23 schemes were almost equal in performance and both
were Pareto optimal. The WENO35 scheme, despite having the same
experimental rate and normalized L1 norm as the WENO23 scheme,
exhibited an increased runtime caused by the higher computational
effort required.

6.3. Case 3: size-independent growth with nucleation

In this case, we validate our implementation of the nucleation term
when introduced as a point source in the 1D PBM for a BSTR. In this
case, the PBM remains decoupled from the mass balance. This test was
also used by Kumar and Ramkrishna (1997) and Kumar et al. (2008).
Consider a population balance equation:
𝜕𝑛
𝜕𝑡

= −𝑣𝐺
𝜕𝑛
𝜕𝑥

+ 𝐵0𝜎(𝑥 − 𝑥𝑐 )

We assume the critical nuclei have negligible sizes (𝑥𝑐 = 0) and
the balance equation has the initial and boundary conditions 𝑛(𝑥, 0) =
𝑛(0, 𝑡) = 0. Hounslow (1990) has provided an analytical solution: 𝑛 =
𝐵0
𝐺0

𝐻(𝑡 − 𝑥
𝐺0

), where 𝐺0 is a constant and 𝐻 is the Heaviside function.
Since 𝐵0 = 𝐵𝑝 + 𝐵𝑠, we test the terms for both primary and secondary
nucleation by setting 𝐵𝑝 = 𝐵𝑠 = 5 ⋅ 109.

Fig. 5(a) shows the simulation results. The analytical solution has
a rectangular shape because the particles are continuously nucleated
with the same size and grow at a constant rate. The front has a
true discontinuity as no particles larger than those growing from the
nuclei nucleated at 𝑡 = 0 s should exist. The upper constant value
1010 is the sum of 𝐵𝑝 and 𝐵𝑠, indicating the correct implementation
of both nucleation terms. Both terms were also tested independently
with the same result (data not shown). Similar to case 1, all schemes
were challenged to capture the discontinuity with the upwind scheme
performing the worst and the WENO35 performing the best. The error
was analyzed at 𝑡 = 1000 s with results shown in Fig. 5(b). As expected,
the experimental convergence rates for all schemes were below their
designed rates. The WENO35 scheme performed better than all other
schemes. The HR Koren and WENO23 schemes exhibited similar rates,
but the HR Koren scheme had lower normalized L1 norms for a given
𝑁𝑥. Fig. 5(c) shows that the WENO35 scheme performed the best
for errors below ca. 0.15, while HR Koren and WENO23 performed
similarly for larger errors.
11
6.4. Case 4: size-independent growth, nucleation and growth rate dispersion

In this case, we validate our implementation of the growth rate
dispersion term. An analytical solution of the governing equation for
the given regularity boundary condition is not available. However,
an analytical solution exists if we relax this boundary condition by
assuming that the number density at infinite sizes is negligibly small.
This assumption is valid if we choose 𝑥𝑚𝑎𝑥 to be large enough. Even
though theoretically nonzero, the continuous number density distri-
bution rounds down to zero above a sufficiently large 𝑥𝑚𝑎𝑥, as real
particles cannot become infinitely large. Consider a population balance
equation for a BSTR, uncoupled from the mass balance,

𝜕𝑛
𝜕𝑡

= −𝑣𝐺
𝜕𝑛
𝜕𝑥

+𝐷𝑔
𝜕2𝑛
𝜕𝑥2

.

We assume 𝑥𝑐 = 0 and that 𝑣𝐺 is a constant, introduce the nucleation
term 𝐵0 as a boundary condition, and modify the regularity boundary
condition:

𝑛(𝑥, 0) = 0,
(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|𝑥=0 = 𝐵0 = 𝑣𝐺𝑛0,
𝜕𝑛
𝜕𝑥

|𝑥→∞ = 0,

where the last equation is a simplification of the original regularity
boundary condition by assuming 𝑛(𝑥 → ∞) = 0, which will be exam-
ined by inspecting the last cell. An analytical solution was provided
by Mason and Weaver (1924) and Gershon and Nir (1969) and could
be found in the SI.

The largest size considered is set to 𝑥𝑚𝑎𝑥 = 500 μm in the simulations
to ensure that 𝑛 in the last cell is negligible. Fig. 6 shows the analytical
and simulated results for 𝑥 ∈ [0, 150]. The largest value of 𝑛 in the
last cell for all the tested parameter sets were found to be 4.9 ⋅ 10−42

(𝑁𝑥 = 100), which is negligible compared with the starting value of
0.10, justifying our simplification of the regularity boundary condition.
Compared with the sharp decrease in the analytical solution in the
previous test case, the spread in the distribution is a result of the growth
rate dispersion. The larger the growth rate dispersion coefficient, the
more spread out the solution becomes.

We can define a growth Peclet number P𝑒𝐺 as

P𝑒𝐺 =
𝑣𝐺𝐿
𝐷𝑔

.

Typical growth Peclet numbers are reported to range from 5 to
10 (Randolph and White, 1977) with both ends of the range considered
in this test. For a given Peclet number, 𝐷𝑔 depends on the mean size
of the PSD, which cannot be determined with an unknown 𝐷𝑔 . This
circular dependency is resolved by fixed-point iteration: starting with
an initial guess for 𝐷𝑔 , the mean size is calculated from the simulated
PSD of interest. Then 𝐷𝑔 is updated using this mean size, and the
procedure is repeated until 𝐷𝑔 converges.

The lower bound test has a relatively small growth Peclet number
of P𝑒 = 5, indicating a strong growth rate dispersion. The upper
𝐺
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Fig. 6. Case 4: size-independent growth with growth rate dispersion and nucleation. The bottom panel is based on the case where P𝑒𝐺 = 10 and 𝑡 = 3 s.
Fig. 7. Case 5: isothermal seeded crystallization in a BSTR.
bound test has a relatively large growth Peclet number of P𝑒𝐺 = 10,
indicating weak growth rate dispersion. As can be seen in Fig. 6(a–
b), the upwind scheme was more dispersive and deviated from the
analytical solution more than the high-order schemes no matter which
12
P𝑒𝐺 and 𝑡 was tested when using the same number of cells. However,
when P𝑒𝐺 decreased, the upwind scheme demonstrated improved per-
formance because the stronger numerical dispersion inherent to the
upwind scheme reconciled with the actual modeled dispersion.
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The error and convergence rate analysis agreed with the above
observation and showed that the upwind scheme demonstrated the
largest normalized L1 norm followed by HR Koren, WENO23 and
then WENO35 for the same 𝑁𝑥. Except for the upwind scheme, a
imilar convergence rate of around 2.6 was observed for all high-order
chemes. While the experimental rates for the upwind and WENO23
ere easy to explain, the rates for HR Koren and WENO35 were not
ithin their expected ranges and required further elaboration. There
re several convoluted factors contributing to this observation. First,
or finite volume methods, the convergence rate of the high-order
chemes for the growth flux reconstruction cannot exceed the order of
he boundary treatments. As mentioned in Section 3, the rate of the
igh-order schemes were reduced as the lower boundary is approached,
endering an order of 1 for the first cell. Furthermore, the contribution
f the first cell to the overall convergence rate when increasing 𝑁𝑥 is

also reduced, leading to an overall second-order boundary treatment.
Second, the dispersion term was approximated using a second order
approximation. Depending on how strong the growth dispersion is com-
pared with the growth, the overall convergence rate may vary between
2 and the chosen order of the flux reconstruction for the growth which
is again limited by the order of the boundary treatment. In this test, the
expected convergence rate for all high-order schemes is 2. However,
an even better convergence rate of about 2.6 was observed for the
high-order schemes implemented. This indicates that the high-order
schemes were correctly implemented as the design-order discretization-
error convergence is an asymptotic property and represents a lower
bound. Further, the same convergence rate (about 2.4) for the WENO
schemes had also been observed in our previous work (Leweke and
von Lieres, 2018). As seen in Fig. 6(d), the WENO35 scheme not only
could not reach its optimal rate due to the limitations of the boundary
treatment, but also involved more computations which increased its
runtime, making HR Koren and WENO23 the best schemes for this test
case.

A moment analysis was also performed for the case where P𝑒𝐺 = 10
nd 𝑡 = 6 s. To obtain the analytical moments, direct integration
f the analytical solution is difficult. Instead, we used Simpson’s rule
n a fine grid (10,000 points between 0 and 150) to obtain highly
ccurate reference values. The relative percent error is presented in
ig. 3(b). As expected, the zeroth order moment is always accurate,
ndicating a correct implementation. The upwind scheme showed the
argest relative error for the sixth order moment, with errors as high as
40%. Overall, high-order schemes worked satisfactorily in capturing
hese moments and increased accuracy can be achieved by increasing
𝑥 at the cost of runtime.

.5. Case 5: isothermal seeded crystallization in a BSTR

In this case, the PBM (Eq. (2)) is coupled to the solute mass
alance equation (Eq. (8)). We assume that the seed distribution is
haracterized by a log-normal distribution (52) with 𝑦0 = 0, 𝐴 =
015, 𝑤 = 0.3 and 𝑥𝑐𝑒 = 40. Unfortunately, an analytical solution is
ot available when the mass balance equation is considered. Instead,
eference solutions were obtained using the WENO35 scheme on a fine
ogarithmic grid.

Fig. 7(a) shows the results. The green curve is the seed distribution.
he blue curve is the simulated results for an ideal case assuming
hat the experimental conditions are carefully designed such that the
articles only grow on the seed and no secondary nucleation occurs.
unimodal distribution was obtained. Compared with the seed distri-

ution, the final PSD seemed to be narrower due to the scaling on the
ogarithmic grid. The orange curve represents a case where unwanted
econdary nucleation occurs, which affects the growth of the seed. A
imodal distribution was observed as a result of both the growth of
he seed particles and secondary nucleation. The sharp front of the
irst mode (counting from left to right) was the result of secondary
13

ucleation, which decreased rapidly when supersaturation 𝑠 decreased l
ue to the solute mass consumed by nucleation and growth, leading
o a classic tailing behavior. The second mode comes from the growth
f the seed particles. Compared to the same mode in the growth-
nly case, there were significantly fewer large particles. This is not
urprising since a fraction of the total solute mass was transferred to
he first mode. The inset picture depicts the relative supersaturation
as a function of time: the initial relative supersaturation 𝑠 = 0.67

radually decreased to zero, which stopped further nucleation and
rowth. As expected, 𝑠 decreased faster when secondary nucleation was
onsidered.

If the first mode or the secondary particles are undesirable, increas-
ng the amount of seed or using a lower supersaturation helps alleviate
he problem. The blue curve in Fig. 7(b) shows the results obtained
y decreasing the initial supersaturation (𝑠 = 0.25). Compared to the
range curve in (a), which had a supersaturation of 𝑠 = 0.67, the height
f the first mode was reduced by a factor of three. Similarly, when the
nitial seed amount was quadrupled, the first mode was also substan-
ially reduced in population. In other words, a higher supersaturation or
lower seed amount induced a stronger or an early onset of secondary
ucleation. This result agreed well with the experimental observations
ade by Caillet et al. (2007), Frawley et al. (2012) and Saleemi et al.

2012).
Further error analysis were thoroughly carried out for three differ-

nt situations (cases 5A-C). Cases 5A-B considered the growth of the
eed alone on different grid structures. Case 5C considered nucleation
nd growth on a logarithmic grid. In case 5 A (Fig. 7(c), (d)) where a
niform grid was used, the WENO35 performed much better than all
ther schemes, exhibiting a convergence rate of 4.7 compared with 0.8,
.8 and 2.0 observed in the upwind, HR Koren and WENO23 scheme,
espectively. The rates for all the high-order schemes were expected
ith the WENO35 approaching its upper bound and the WENO23 lying
n its theoretical lower bound. Since the solution was not entirely
mooth, the HR Koren scheme did not reach its maximum theoretical
ate of 2.

In case 5B ((e), (f)), we are concerned with using a logarithmic
rid structure as the PSD is often reported inherently on a logarithmic
rid by the particle size distribution measurement instrument used.
ompared to the uniform grid case, the experimental convergence rate

or the WENO35 scheme decreased from 4.7 to 3.2, but was still within
he expected range. In contrast, the rates for the upwind, HR Koren,
nd WENO23 schemes were slightly increased by about 0.1. Case
C ((g), (h)) considered nucleation and growth alone without seeds.
ompared with cases 5 A and B, the rates for all high-order schemes
ere dramatically decreased with a highest rate of 1.6 observed for the
ENO35 scheme. This was expected as explained in Case 4. With cases

A-C considered, the WENO35 scheme was the best scheme for this test
ase, since its performance always dominated the other schemes ((d),
f), (h)).

The convergence rates on nonuniform grids in this case were obvi-
usly inferior to those attained on uniform grids. This was not totally
nexpected as similar results can be found in the literature. Central
inite volume schemes are known to be only first-order accurate on
ogarithmic grids (Turkel, 1986). Wellner also reported a reduced
xperimental convergence rate for the WENO schemes on nonuniform
rids for an entropy advection problem (Wellner, 2016). The deteriora-
ion might be attributed to the fact that the finite volume scheme is not
enerally consistent on nonuniform grids which can lead a reduction
f the rate of discretization error (Diskin and Thomas, 2010; Svärd
t al., 2008). However, a formal and rigorous analysis on the grid
eometry’s impact on the discretization error convergence rate for
igh-order schemes is beyond the scope of this article.

Regarding the runtime, there is one interesting note. The loga-
ithmic grid posed a bigger numerical challenge: given the same 𝑁𝑥,
ll schemes had much longer runtimes compared to their uniform
rid counterpart (Figure S1(a) and (b)). This is not surprising as the

ogarithmic grid has a higher cell density near the lower and middle



Computers and Chemical Engineering 183 (2024) 108612W. Zhang et al.
Fig. 8. Case 6: Solute transport in a DPFR with a first-order reaction.
Fig. 9. The solid curves are the number density distributions and the dashed curves are the volume fraction distributions. (a), (b): PBM solutions in a DPFR. 𝑁𝑥 = 𝑁𝑐𝑜𝑙 = 100 with
WENO35. Non-equilibrium solutions at 𝑡 = 80 s. (a): case 7 A; (b): case 7B. (c) (d): flow equilibrium solutions at the reactor outlet (𝑡 = 200 s). (c): case 7 A, 𝑁𝑥 = 200; (d): case
7B, 𝑁𝑥 = 400.
parts of the size domain where the solution resides. It can be seen
as a local grid refinement such that it better approximates the true
solution but increases the runtime as a trade-off. Further, calculations
of the high-order scheme coefficients are also more complicated on
logarithmic grids.

6.6. Case 6: DPFR with a first-order reaction

The above five cases considered the internal coordinate 𝑥 alone.
The finite volume discretization of the external coordinate 𝑧 using the
upwind, WENO23 and WENO35 schemes were implemented in CADET
and thoroughly validated and benchmarked in separate studies (von
Lieres and Andersson, 2010; Leweke and von Lieres, 2018). As a
new feature, the HR Koren scheme is implemented for the external
coordinate in this article. To demonstrate its correct implementation
and prepare the 2D-PBM case, we present a case study to recapitulate
the key points for the external coordinate 𝑧 alone by examining a first
14
order reaction in a DPFR. The relative and absolute tolerances in this
case were set to 10−11.

Consider a one-dimensional convective-diffusive solute transport
equation in the axial coordinate 𝑧 with a first-order reaction sink term:

𝜕𝑐
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑐
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑐
𝜕𝑧2

− 𝜇𝑐,

where 𝜇 is the first-order reaction forward rate constant. We assume
the above equation is subject to the following Danckwerts boundary
conditions and an initial condition with no solute:

𝑐(𝑧, 0) = 0, (𝑣𝑎𝑥𝑐 −𝐷𝑎𝑥
𝜕𝑐
𝜕𝑧

)|𝑧=0 = 𝑣𝑎𝑥𝑐0,
𝜕𝑐
𝜕𝑧

(𝐿, 𝑡) = 0,

where 𝑐0 is the solute feed concentration and 𝐿 is the length of the
reactor. The PDE admits an approximate analytical solution given
by van Genuchten and Alves (1984) which can be found in the SI.

The solute concentration at the outlet of the DPFR is plotted as a
function of time in Fig. 8(a). The feed concentration was 0.1 kg∕m3

but the solute outlet concentration in flow equilibrium was less than
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0.03 kg∕m3, reflecting the fact that the solute was partly consumed by
the first-order reaction. Despite the small number of cells 𝑁𝑐𝑜𝑙 = 50 we
used in this test, the WENO23 and WENO35 schemes exhibited excel-
lent agreement with the analytical solution. The upwind scheme, on the
other hand, was again dispersive and showed minor over-predictions.
Further error analysis showed error convergence rates of (0.9, 2.0,
2.5, 2.5) for the upwind, HR Koren, WENO23 and WENO35 schemes,
respectively. Since the solute also entered the system through the left
Danckwerts boundary condition, the WENO35 scheme did not reach a
designed rate between 3 and 5, limited by the order of the boundary
flux treatment. Interestingly, for a normalized error larger than about
10−4, the HR Koren scheme exhibited a smaller error compared to the
WENO23 scheme using the same number of cells 𝑁𝑐𝑜𝑙. However, it was
surpassed by the WENO23 scheme for errors smaller than about 10−4,
due to the smaller convergence rate of the HR Koren scheme. Taking
the runtime into account, as seen in Fig. 8(c), the HR Koren scheme
was superior to other schemes for a normalized error larger than 10−5,
but was superseded by the WENO23 and WENO35 schemes in an even
smaller error regime.

6.7. Case 7: isothermal continuous precipitation in a DPFR

In this case study we present a test corresponding to the isothermal
continuous precipitation of a solute in a DPFR. The 2D governing
equation (11) is coupled to the solute mass balance equation (15). The
PSD distribution of interest is that obtained at the reactor outlet when
flow equilibrium was achieved. Reference solutions were generated on
a fine grid since there were no analytical solutions available for this
case. Two situations were considered (cases 7A-B): case 7 A assumed
that the particles were born as critical nuclei, and case 7B assumed that
the particles were nucleated with an intrinsic log-normal distribution.
Uniform and logarithmic grids for the internal particle coordinate 𝑥
were tested for both cases. A uniform grid was consistently used for the
external axial coordinate 𝑧. To reduce complexity, the same numerical
scheme was used for the internal and external coordinates, even though
other combinations are generally possible. There are two questions
we want to answer: 1. what is the best scheme for both coordinates
and; 2. what is the optimal trajectory to increase the cell number in
both coordinates to stay on the Pareto fronts? This analysis includes
the normalized L1 norm of the distribution itself and the percent
errors of several scalar metrics. For each scheme in both cases 7A-B,
25 simulations with varying cell numbers in both coordinates were
evaluated on a 5x5 grid. The exact grid arrangement can be found in
Table S10 in the SI.

6.7.1. Case 7A: particles are born as critical nuclei
In case 7 A, particles are born as critical nuclei on a logarithmic

grid. The full 2D-PBM solutions can be obtained at any discrete time
point inside the reactor: Fig. 9(a) shows solutions at 𝑡 = 80 s, when
the flow has not yet reached equilibrium and a transient behavior
was observed. The time required to reach flow equilibrium can be
identified by a residence time study, and was found to be about 120 s.
In practice, we are mainly interested in the flow equilibrium solutions
at the reactor outlet, therefore, numerical solutions obtained at 𝑡 =
200 s at the outlet were used for further analysis. When comparing
numerical solutions obtained using different numbers of cells in the
axial coordinate 𝑁𝑐𝑜𝑙, we noticed that a sufficiently large 𝑁𝑐𝑜𝑙 was
crucial for accurate approximations. In Fig. 9(c), an insufficient 𝑁𝑐𝑜𝑙
led to a truncated intensity of the number density distribution and
over-predictions of the amount of large particles. 𝑁𝑐𝑜𝑙 = 1 and 2 also
presented interesting special cases as the WENO35 scheme was not
fully developed and reduced to the upwind scheme. These cases were
essentially approximations of the DPFR by a single CSTR and two CSTRs
in series, with both having large errors.

Fig. 10 shows the normalized L1 norm vs. runtime. Interpretation
of this figure is similar to those in the 1D cases. However, in the 2D
15
case each scheme has Pareto-optimal and dominated points, originating
from different combinations of 𝑁𝑐𝑜𝑙 and 𝑁𝑥. Pareto-optimal points
within each scheme were connected by a line of the same color. The
relative position of these lines determines the Pareto front across all
schemes. In case 7 A, Fig. 10(a), all high-order schemes showed similar
performance and were Pareto optimal.

Fig. 11(a) shows the normalized L1 norm vs. 𝑁𝑥 and 𝑁𝑐𝑜𝑙. The
surface gradients along the 𝑁𝑥 direction were steeper than that in the
𝑁𝑐𝑜𝑙 direction, indicating a faster decrease of the error when increasing
𝑁𝑐𝑜𝑙 compared with increasing 𝑁𝑥. We observed that along the 𝑁𝑥
axis, the gradient slope (rate) decreased as 𝑁𝑥 increased. For instance,
the slope along the 𝑁𝑥 coordinate at a fixed 𝑁𝑐𝑜𝑙 = 600 decreased
from (1.2, 1.6, 1.9, 2.8) to (1.0, 0.7, 0.1, 0.4) for the upwind, HR
Koren, WENO23 and WENO35 schemes, respectively. In contrast, the
gradient slope along the 𝑁𝑐𝑜𝑙 coordinate increased as 𝑁𝑐𝑜𝑙 increased.
For instance, the gradient slope along the 𝑁𝑐𝑜𝑙 coordinate at a fixed
𝑁𝑥 = 200 increased from (0.9, 0.9, 0.9) to (3.2, 3.5, 3.4) for the HR
Koren, WENO23 and WENO35 schemes, respectively. These changes
can be explained in the following way. The global normalized L1 norm
for 2D case can be described by:

𝑂
(

(𝛥𝑥)𝛼 + (𝛥𝑧)𝛽
)

(53)

where 𝛥𝑥 and 𝛥𝑧 are equivalent cell sizes (for nonuniform grids) and
𝛼 and 𝛽 are the designed rates of the discretization schemes. When
the discretization for one coordinate is fixed, for instance, if 𝛥𝑧 and
𝛽 are fixed, the observed rate for decreasing 𝛥𝑥 would depend on the
relative values of (𝛥𝑥)𝛼 and (𝛥𝑧)𝛽 . When (𝛥𝑥)𝛼 is decreased to an extent
such that is becomes negligible compared to (𝛥𝑧)𝛽 , then the global error
would only be proportional to 𝑂((𝛥𝑧)𝛽 ). This explains the rate decrease
observed when increasing 𝑁𝑥. The rate increase when increasing 𝑁𝑐𝑜𝑙
can also be similarly explained: the global error was dominated by
(𝛥𝑧)𝛽 . However, the low rate at the beginning was because the problem
was still under-resolved as 𝑁𝑐𝑜𝑙 was too small. A true rate was revealed
when 𝑁𝑐𝑜𝑙 was sufficiently large as it is an asymptotic property.

Projections of the Pareto fronts in Fig. 11(a) onto the 𝑁𝑥-𝑁𝑐𝑜𝑙 plane
is shown in (b). From (b) a general trend could be revealed for all
schemes: increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙 proportionally keeps the simulation
to stay on the Pareto front. This was expected as both 𝛥𝑥 and 𝛥𝑧
in Eq. (53) needed to decrease at a similar rate (𝛥𝑥 ∼ 𝛥𝑧, 𝛼 = 𝛽 in
this case) to show convergence.

Regarding the runtime, increasing 𝑁𝑥 or 𝑁𝑐𝑜𝑙 led to an increased
runtime overhead, however, this overhead increased at different rates.
From the log–log–log plot of the runtime vs. 𝑁𝑥, 𝑁𝑐𝑜𝑙 in Figure S2, we
found that the runtime increased with an order of 1 when increasing
𝑁𝑐𝑜𝑙 for all schemes. In contrast, the runtime was increasing faster at
an order of 2 when increasing 𝑁𝑥 for all schemes involved. This can be
explained by the fact that CADET utilizes a highly optimized domain
decomposition method in the 𝑧 domain which has not yet been applied
in the 𝑥 domain.

Moments were used to calculate the volume-averaged mean size,
total count and count of the fine particles which are defined as particles
smaller than 10 μm in this test. Shown in Figure S9, the errors for these
metrics decreased in a similar fashion to the normalized L1 norm when
increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙, which was not surprising as they were linear
combinations of the moments calculated from the distribution itself and
their global errors should converge in a similar way to the normalized
L1 norm. As revealed in Fig. 12, the HR Koren scheme was found to
be Pareto optimal for the mean size while all schemes including the
upwind scheme showed similar performances for the total count and
fine count. Another important observation here was that these Pareto
fronts were different from those in Fig. 10(a) and a different optimal
trajectory should be used if only these metrics were of interest.

The advantages of using analytical Jacobians compared to AD are
briefly demonstrated in Table 1. Although the speed-up declined as 𝑁𝑥
and 𝑁𝑐𝑜𝑙 increased, simulations using analytical Jacobians were still
generally one order faster than those using AD.
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Fig. 10. Case 7: normalized L1 norm vs. runtime. A uniform grid is used for the external coordinate. Numerical schemes are indicated by color. Scatters are the results from the
5x5 grid. Solid lines are Pareto fronts of each scheme. Particles born (a) as critical nuclei on a logarithmic grid, (b) as critical nuclei on a uniform grid, (c) with an intrinsic
log-normal distribution on a logarithmic grid, (d) with an intrinsic log-normal distribution on a uniform grid.
Table 1
Runtime using AD vs. analytical Jacobians for Case 7A. The same number of cells were used in both coordinates.
𝑁𝑥, 𝑁𝑐𝑜𝑙 Upwind HR Koren

AD Analytical Speed-up factor AD Analytical Speed-up factor

10 1.22 s 0.06 s 20.33 2.68 s 0.07 s 38.29
20 6.63 s 0.20 s 33.15 17.49 s 0.40 s 43.73
40 39.46 s 1.97 s 20.03 119.86 s 5.63 s 21.29
80 243.70 s 19.56 s 12.46 859.43 s 59.37 s 14.48

𝑁𝑥, 𝑁𝑐𝑜𝑙 WENO23 WENO35

AD Analytical Speed-up factor AD Analytical Speed-up factor

10 2.88 s 0.07 s 41.14 5.43 s 0.06 s 49.36
20 20.89 s 0.40 s 52.23 41.26 s 0.31 s 61.58
40 119.37 s 4.21 s 28.35 304.97 s 3.32 s 41.27
80 918.65 s 48.18 s 19.07 2266.30 s 77.97 s 16.43
The impact of a uniform grid for the internal coordinate 𝑥 was also
tested, keeping everything else the same as in the above logarithmic
grid case. The Pareto front for the uniform grid case is reported in
Fig. 10(b) and the corresponding error and runtime plots can be found
in Figure S6 and S3. In contrast to the logarithmic grid case where the
upwind scheme showed the worst performance, it actually became the
Pareto optimal for a higher error regime (about 0.1) while at a lower
error regime it was superseded by high-order schemes which shared
similar performances. Except for the upwind scheme whose error de-
creased slowly along the 𝑁𝑥 and 𝑁𝑐𝑜𝑙 coordinates at a rate of around
0.8, the errors for all high order schemes decreased at a faster rate with
a maximum of 2 and 1 along 𝑁𝑥 and 𝑁𝑐𝑜𝑙 coordinates, respectively. The
runtime for the high order schemes in the 𝑥 coordinate increased at a
rate of 2 while a rate of 1 was observed for the 𝑧 coordinate.
16
For the scalar metric errors and Pareto front analysis in Figure S10
and S11: the mean size and total count errors had similar shapes to
that of the normalized L1 norm. However, errors for the fines count
did not strictly converge as we increased 𝑁𝑥 or 𝑁𝑐𝑜𝑙. This might be
explained by the inconsistency of the scheme that led to decreased or
non-convergence of the local error combined with a forced cell search
(𝑥𝑖 < 10 μm) that resulted in an irregular pattern for the number of cells
considered for the calculation of the error. The Pareto front analysis
showed that HR Koren and WENO23 were Pareto optimal for the mean
size. Surprisingly, the upwind scheme dominated all other schemes for
the total and fine particle counts. Similar to the logarithmic grid case,
these Pareto fronts were different from those in Fig. 10(b), indicating
that they had different optimal trajectories.
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Fig. 11. (a): log–log–log surface plots of the normalized L1 norm vs. 𝑁𝑥 and 𝑁𝑐𝑜𝑙 . The Pareto optimal is highlighted; (b): projections of the Pareto optimal onto the 𝑁𝑥 and 𝑁𝑐𝑜𝑙
plane.
Fig. 12. Percent error vs. runtime for the evaluated metrics. Scatters are the evaluated points. Solid lines are the Pareto fronts.
6.7.2. Case 7B: particles are born with an intrinsic log-normal distribution
In case 7B, particles are born with an intrinsic log-normal distribu-

tion (52) (𝑦0 = 0 , 𝐴 = 1 , 𝜔 = 0.3 , 𝑥𝑐𝑡 = 4.). Fig. 9(b) and (d) shows
non-equilibrium solutions at 𝑡 = 80 s and flow equilibrium solutions at
the reactor outlet at 𝑡 = 200 s. Similar to case 7 A, an insufficient 𝑁𝑐𝑜𝑙
resulted in under-predictions of the number density distribution inten-
sity and over-predictions of the amount of large particles, which was
evident in the volume fraction distribution. Compared to case 7 A, an
even more dramatic discrepancy in the volume fraction distribution was
seen when 𝑁𝑐𝑜𝑙 was insufficient, stressing its crucial role in reducing
errors.

Error and runtime analyses were carried out for case 7B. Fig. 10(c)
shows the HR Koren scheme was the Pareto front scheme for a normal-
ized error smaller than ca. 0.5, but the upwind scheme was dominant
for a larger error regime. Judging from Figure S7, the normalized L1
norm converged very slowly along the 𝑁𝑥 coordinate. Similar to case
7 A, the slope along the 𝑁𝑥 coordinate at 𝑁𝑐𝑜𝑙 = 400 was gradually
decreasing from (0.5, 0.2, 0.9, 0.5) to (0.1, 0.0, 0.0, 0.0) for the upwind,
HR Koren, WENO23 and WENO35 schemes, respectively. In contrast,
the error converged at a much faster rate along the 𝑁𝑐𝑜𝑙 coordinate: the
steepest slope at 𝑁𝑥 = 200 was found to be (1.0, 2.3, 2.3, 2.3) for the
upwind, HR Koren, WENO23 and WENO35 schemes, respectively. In
terms of the runtime (Figure S4), increasing the number of cells in the
internal coordinate 𝑥 led to a bigger penalty than that in the external
17
coordinate 𝑧 with an order of around 2.2 for increasing 𝑁𝑥 and an order
of around 0.9 for increasing 𝑁𝑐𝑜𝑙 for all schemes involved. Regarding
the scalar metrics (Figure S12 and S13), the HR Koren scheme still
resided on the Pareto front for the mean size. For the total particle
count, similar to the normalized L1 norm, the upwind and HR Koren
schemes were the Pareto optimal depending on the error regime. In
contrast, the upwind scheme was dominant for the fine particle count
errors.

When case 7B was tested on a uniform grid (Fig. 10(d)), similar
performance was observed for all schemes. Similar to the observed
performance for case 7 A, for a fixed 𝑁𝑐𝑜𝑙, the error converged slowly
when increasing 𝑁𝑥, with a maximum order of 1.2 seen in WENO35.
The error again converged faster for a fixed 𝑁𝑥 when increasing 𝑁𝑐𝑜𝑙
with a maximum of 1.8 seen in the WENO35. For all schemes involved,
the runtime increased at an order of about 0.8 when increasing 𝑁𝑐𝑜𝑙 and
an order of about 2.0 when increasing 𝑁𝑥. Regarding the scalar metrics
(Figure S14 and S15), all schemes performed equally well in reducing
the errors for a given runtime.

7. Conclusions

In this article, we solved the population balance model coupled with
a solute mass balance equation formulated for stirred tank and in a dis-
persive plug flow reactor formats in CADET. We implemented several
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widely-used expressions for the particle nucleation and growth consti-
tutive equations. Due to the open source code of CADET, the mathemat-
ical expressions can be modified to accommodate different applications
in different fields which apply population balances. A special popula-
tion balance formulation that considers the case where the nuclei can
be generated beyond the critical nuclei is also presented. A finite vol-
ume method with several flux reconstruction schemes including the up-
wind, HR Koren with the van Leer flux limiter, WENO23 and WENO35
schemes for arbitrary grids was implemented, and rigorously veri-
fied and numerically bench-marked. Analytical Jacobians associated
with all flux reconstruction schemes were derived and implemented to
reduce the runtime.

The fidelity of the numerical representation of each of the terms
of the governing equations was carefully validated throughout seven
test cases. We revisited and improved some of the existing test cases
and generated several new test cases for the 1D and 2D PBM. Novel
bench-marking methodologies were developed to test solver perfor-
mances. These test cases shed light on appropriate flux reconstruction
schemes and cell numbers to use depending on the chosen crystalliza-
tion/precipitation mechanisms and initial conditions of the system.

For 1D cases, the WENO35 scheme was observed to be the optimal
scheme to use when there is only growth of an initially smooth particle
size distribution. If the initial distribution is sharp or the particles are
born as critical nuclei, the WENO35 scheme was at best similar to and
sometimes inferior to the HR Koren and WENO23 schemes due to either
increased number of calculations involved or due to limitations of the
boundary treatment. We further found that the use of logarithmic grids
resulted in a higher computational burden and a slower convergence
rate. The former was due to the grid refinement and extra computations
for the scheme coefficients, while the latter might be attributed to the
non-consistency of the finite volume scheme on nonuniform grids.

For 2D PBM cases, we found that an insufficient number of cells
𝑁𝑐𝑜𝑙 in the external coordinate 𝑧 led to under-predictions of the number
density distribution intensity and over-predictions of the amount of
large particles. By examining the normalized L1 norm under differ-
ent cases, we found that it decreased quickly when increasing 𝑁𝑐𝑜𝑙,
tressing its importance. Regarding the grid structure for 𝑥, the error
ecreased faster on a uniform grid than on a logarithmic grid for 𝑥. This
s because the latter usually had smaller absolute values and errors in 𝑧
ere dominant, leading to apparent rate reductions for increasing 𝑁𝑥.
e further found that on a logarithmic grid, increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙

roportionally helped the scheme to stay on the Pareto fronts. When
ncreasing 𝑁𝑐𝑜𝑙 and 𝑁𝑥, the runtime increased at a rate of two and one,
espectively. Regarding the scalar metrics, their errors demonstrated
ifferent Pareto optimal behaviors. Sometimes the upwind scheme
ould also dominate the performance of high order schemes, but it
ould eventually give away if higher accuracy is desired. Errors for the

ine particle count did not converge, possibly due to non-consistency
f the finite volume scheme on nonuniform grids and(/or) a hard grid
earch. Overall, a logarithmic grid for 𝑥 using the HR Koren scheme and
ncreasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙 proportionally should be the primary choice for
D cases. However, caution must be taken if the scalar metrics are of
pecial interest.

The second part of this work was devoted to incorporating the
moluchowski equation to account for the aggregation and fragmen-
ation processes in a stirred tank and dispersive plug flow reactor. We
otice that solving the 2D PBM using the finite volume methods has
ed to a runtime increase of 1–2 orders of magnitude compared with
D cases, which can be rather burdensome when solving complicated
ptimization problems.

In this work, the external and internal coordinates are discretized
sing the finite volume method. This can potentially be improved by
pplying high-order methods, such as a non-oscillatory discontinuous
alerkin method. Previous studies by Breuer et al. (2023) have shown
p to two orders of magnitude of runtime speedup in the external co-
18

rdinate. As both coordinates can be discretized separately, we expect
ven greater speedups in the 2D case. The method can potentially be
urther improved by concurrently discretizing both coordinates. This
ill require substantial changes to the core CADET code and will be

he subject of future work.

RediT authorship contribution statement

Wendi Zhang: Data curation, Formal analysis, Investigation,
ethodology, Software, Validation, Visualization, Writing – original

raft. Todd Przybycien: Conceptualization, Funding acquisition,
roject administration, Resources, Supervision, Writing – review

editing. Johannes Schmölder: Data curation, Methodology,
oftware. Samuel Leweke: Methodology, Software. Eric von Lieres:
onceptualization, Methodology, Resources, Supervision, Writing –
eview & editing.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The code and data will be made available on GitHub.

cknowledgments

Wendi Zhang was supported by the U.S. Food and Drug Admin-
stration, USA, Contract No. 75F40121C00111. Johannes Schmölder
as received funding from the Innovative Medicines Initiative 2 Joint
ndertaking, EU under grant agreement No 101007799 (Inno4Vac).
ny opinions, findings, conclusions, or recommendations expressed in

his material are those of the authors and do not necessarily reflect the
iews of the financial sponsors. We cordially thank Jan Michael Breuer
or his valuable comments which improved the manuscript.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.compchemeng.2024.108612.

eferences

begg, C.F., Stevens, J.D., Larson, M.A., 1968. Crystal size distributions in continuous
crystallizers when growth rate is size dependent. AIChE J. 14 (1), 118–122.
http://dx.doi.org/10.1002/aic.690140121.

hmed, N., Matthies, G., Tobiska, L., 2011. Finite element methods of an operator
splitting applied to population balance equations. J. Comput. Appl. Math. 236 (6),
1604–1621. http://dx.doi.org/10.1016/j.cam.2011.09.025.

lvarez, A.J., Myerson, A.S., 2010. Continuous plug flow crystallization of pharma-
ceutical compounds. Cryst. Growth Des. 10 (5), 2219–2228. http://dx.doi.org/10.
1021/cg901496s.

ràndiga, F., Baeza, A., Belda, A.M., Mulet, P., 2011. Analysis of WENO schemes for
full and global accuracy. SIAM J. Numer. Anal. 49 (2), 893–915. http://dx.doi.org/
10.1137/100791579, URL: http://epubs.siam.org/doi/10.1137/100791579.

ansode, V., Gupta, P., Kateja, N., Rathore, A.S., 2022. Contribution of protein A
step towards cost of goods for continuous production of monoclonal antibody
therapeutics. J. Chem. Technol. Biotechnol. 97 (9), 2420–2433. http://dx.doi.org/
10.1002/jctb.6686.

arry, K., 1993. A robust upwind discretization method for advection, diffusion and
source terms. Int. J. Numer. Methods Fluids 117–138, URL: https://onlinelibrary.
wiley.com/doi/10.1002/fld.2700.

enitez-Chapa, A.G., Nigam, K.D., Alvarez, A.J., 2020. Process intensification of
continuous antisolvent crystallization using a coiled flow inverter. Ind. Eng. Chem.
Res. 59 (9), 3934–3942. http://dx.doi.org/10.1021/acs.iecr.9b04160.

ennett, M.K., Rohani, S., 2001. Solution of population balance equations with a
new combined Lax- Wendroff/Crank-Nicholson method. Chem. Eng. Sci. 56 (23),

6623–6633. http://dx.doi.org/10.1016/S0009-2509(01)00314-1.

https://doi.org/10.1016/j.compchemeng.2024.108612
http://dx.doi.org/10.1002/aic.690140121
http://dx.doi.org/10.1016/j.cam.2011.09.025
http://dx.doi.org/10.1021/cg901496s
http://dx.doi.org/10.1021/cg901496s
http://dx.doi.org/10.1021/cg901496s
http://dx.doi.org/10.1137/100791579
http://dx.doi.org/10.1137/100791579
http://dx.doi.org/10.1137/100791579
http://epubs.siam.org/doi/10.1137/100791579
http://dx.doi.org/10.1002/jctb.6686
http://dx.doi.org/10.1002/jctb.6686
http://dx.doi.org/10.1002/jctb.6686
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
http://dx.doi.org/10.1021/acs.iecr.9b04160
http://dx.doi.org/10.1016/S0009-2509(01)00314-1


Computers and Chemical Engineering 183 (2024) 108612W. Zhang et al.
Breuer, J.M., Leweke, S., Schmölder, J., Gassner, G., von Lieres, E., 2023. Spatial
discontinuous Galerkin spectral element method for a family of chromatography
models in CADET. Comput. Chem. Eng. 177, 108340. http://dx.doi.org/10.1016/j.
compchemeng.2023.108340, URL: https://www.sciencedirect.com/science/article/
pii/S0098135423002107.

Burgstaller, D., Jungbauer, A., Satzer, P., 2019. Continuous integrated antibody precip-
itation with two-stage tangential flow microfiltration enables constant mass flow.
Biotechnol. Bioeng. 116 (5), 1053–1065. http://dx.doi.org/10.1002/bit.26922.

Caillet, A., Sheibat-Othman, N., Fevotte, G., 2007. Crystallization of monohydrate citric
acid. 2. Modeling through population balance equations. Cryst. Growth Des. 7 (10),
2088–2095. http://dx.doi.org/10.1021/cg0606343, URL: https://pubs.acs.org/doi/
10.1021/cg0606343.

Calhoun, D., LeVeque, R.J., 2000. A cartesian grid finite-volume method for the
advection-diffusion equation in irregular geometries. J. Comput. Phys. 157 (1),
143–180. http://dx.doi.org/10.1006/jcph.1999.6369.

Canning, T.F., Randolph, A.D., 1967. Some aspects of crystallization theory: Systems
that violate McCabe’s delta L law. AIChE J. 13 (1), 5–10. http://dx.doi.org/10.
1002/aic.690130104.

Cravero, I., Semplice, M., 2016. On the accuracy of WENO and CWENO reconstructions
of third order on nonuniform meshes. J. Sci. Comput. 67 (3), 1219–1246. http:
//dx.doi.org/10.1007/s10915-015-0123-3, arXiv:1503.00736.

Diskin, B., Thomas, J.L., 2010. Notes on accuracy of finite-volume discretization
schemes on irregular grids. Appl. Numer. Math. 60 (3), 224–226. http://dx.doi.
org/10.1016/j.apnum.2009.12.001.

Frawley, P.J., Mitchell, N.A., Ó’Ciardhá, C.T., Hutton, K.W., 2012. The effects of
supersaturation, temperature, agitation and seed surface area on the secondary
nucleation of paracetamol in ethanol solutions. Chem. Eng. Sci. 75, 183–197.
http://dx.doi.org/10.1016/j.ces.2012.03.041.

Garside, J., Jančić, S.J., 1976. Growth and dissolution of potash alum crystals in
the subsieve size range. AIChE J. 22 (5), 887–894. http://dx.doi.org/10.1002/aic.
690220512.

Gershon, N.D., Nir, A., 1969. Effects of boundary conditions of models on tracer
distribution in flow through porous mediums. Water Resour. Res. 5 (4), 830–
839. http://dx.doi.org/10.1029/WR005i004p00830, URL: http://doi.wiley.com/10.
1029/WR005i004p00830.

Gu, Q., Li, Z., Coffman, J.L., Przybycien, T.M., Zydney, A.L., 2020. High throughput
solubility and redissolution screening for antibody purification via combined PEG
and zinc chloride precipitation. Biotechnol. Prog. 36 (6), http://dx.doi.org/10.
1002/btpr.3041.

Gunawan, R., Fusman, I., Braatz, R.D., 2004. High resolution algorithms for multi-
dimensional population balance equations. AIChE J. 50 (11), 2738–2749. http:
//dx.doi.org/10.1002/aic.10228.

Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R., 1987. Uniformly High Order
Accurate Essentially Non-Oscillatory Schemes, III. Springer.

Hermanto, M.W., Braatz, R.D., Chiu, M.-S., 2009. High-order simulation of polymorphic
crystallization using weighted essentially nonoscillatory methods. AIChE J. 55 (1),
122–131. http://dx.doi.org/10.1002/aic.11644, URL: https://onlinelibrary.wiley.
com/doi/10.1002/aic.11644.

Hou, J., Simons, F., Hinkelmann, R., 2012. Improved total variation diminishing
schemes for advection simulation on arbitrary grids. Internat. J. Numer. Meth-
ods Fluids 70 (3), 359–382. http://dx.doi.org/10.1002/fld.2700, URL: https://
onlinelibrary.wiley.com/doi/10.1002/fld.2700.

Hounslow, M.J., 1990. A Discretized Population Balance for Simultaneous Nucleation,
Growth and Aggregation (Ph.D. thesis). University of Adelaide, URL: https://hdl.
handle.net/2440/19087.

Hulburt, H., Katz, S., 1964. Some problems in particle technology. Chem. Eng. Sci. 19
(8), 555–574. http://dx.doi.org/10.1016/0009-2509(64)85047-8.

Jiang, M., Braatz, R.D., 2019. Designs of continuous-flow pharmaceutical crystallizers:
Developments and practice. CrystEngComm 21 (23), 3534–3551. http://dx.doi.org/
10.1039/c8ce00042e.

Jiang, G.-S., Shu, C.-W., 1996. Efficient implementation of weighted ENO schemes. J.
Comput. Phys. 126 (1), 202–228. http://dx.doi.org/10.1006/jcph.1996.0130.

Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., 2008. An efficient numerical
technique for solving population balance equation involving aggregation, breakage,
growth and nucleation. Powder Technol. 182 (1), 81–104. http://dx.doi.org/10.
1016/j.powtec.2007.05.028.

Kumar, S., Ramkrishna, D., 1997. On the solution of population balance equations by
discretization—III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci.
52 (24), 4659–4679. http://dx.doi.org/10.1016/S0009-2509(97)00307-2.

Larson, M.A., White, E.T., Ramanarayanan, K.A., Berglund, K.A., 1985. Growth rate
dispersion in MSMPR crystallizers. AIChE J. 31 (1), 90–94. http://dx.doi.org/10.
1002/aic.690310110.

van Leer, B., 1985. Upwind-difference methods for aerodynamic problems governed by
the Euler equations. In: Large-Scale Comput. Fluid Mech.. pp. 327–336.

LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, http://dx.doi.org/10.1017/CBO9780511791253.

Leweke, S., von Lieres, E., 2018. Chromatography Analysis and Design Toolkit (CADET).
Comput. Chem. Eng. 113, 274–294. http://dx.doi.org/10.1016/j.compchemeng.
2018.02.025.
19
Li, Z., Gu, Q., Coffman, J.L., Przybycien, T., Zydney, A.L., 2019. Continuous pre-
cipitation for monoclonal antibody capture using countercurrent washing by
microfiltration. Biotechnol. Prog. 35 (6), 1–8. http://dx.doi.org/10.1002/btpr.2886.

Lim, Y.I., Le Lann, J.M., Meyer, X.M., Joulia, X., Lee, G., Yoon, E.S., 2002. On
the solution of Population Balance Equations (PBE) with accurate front tracking
methods in practical crystallization processes. Chem. Eng. Sci. 57 (17), 3715–3732.
http://dx.doi.org/10.1016/S0009-2509(02)00236-1.

Lin, Y., Lee, K., Matsoukas, T., 2002. Solution of the population balance equation
using constant-number Monte Carlo. Chem. Eng. Sci. 57 (12), 2241–2252. http:
//dx.doi.org/10.1016/S0009-2509(02)00114-8.

Liu, X.-D., Osher, S., Chan, T., 1994. Weighted essentially non-oscillatory schemes. J.
Comput. Phys. 115 (1), 200–212. http://dx.doi.org/10.1006/jcph.1994.1187, URL:
http://link.springer.com/10.1007/978-3-642-60543-7_12.

Mahoney, A.W., Ramkrishna, D., 2002. Efficient solution of population balance equa-
tions with discontinuities by finite elements. Chem. Eng. Sci. 57 (7), 1107–1119.
http://dx.doi.org/10.1016/S0009-2509(01)00427-4.

Majumder, A., Kariwala, V., Ansumali, S., Rajendran, A., 2012. Lattice Boltzmann
method for multi-dimensional population balance models in crystallization. Chem.
Eng. Sci. 70, 121–134. http://dx.doi.org/10.1016/j.ces.2011.04.041.

Mantzaris, N.V., Daoutidis, P., Srienc, F., 2001. Numerical solution of multi-variable cell
population balance models. II. Spectral methods. Comput. Chem. Eng. 25 (11–12),
1441–1462. http://dx.doi.org/10.1016/S0098-1354(01)00710-4.

Marchal, P., David, R., Klein, J.P., Villermaux, J., 1988. Crystallization and precipitation
engineering-I. An efficient method for solving population balance in crystallization
with agglomeration. Chem. Eng. Sci. 43 (1), 59–67. http://dx.doi.org/10.1016/
0009-2509(88)87126-4.

Marchisio, D.L., Pikturna, J.T., Fox, R.O., Vigil, R.D., Barresi, A.A., 2003. Quadrature
method of moments for population-balance equations. AIChE J. 49 (5), 1266–1276.
http://dx.doi.org/10.1002/aic.690490517.

Mason, M., Weaver, W., 1924. The settling of small particles in a fluid. Phys. Rev.
23 (3), 412–426. http://dx.doi.org/10.1103/PhysRev.23.412, URL: https://link.aps.
org/doi/10.1103/PhysRev.23.412.

McCabe, W.L., 1929. Crystal growth in aqueous solutions: I—Theory. Ind. Eng. Chem.
21 (1), 30–33. http://dx.doi.org/10.1021/ie50229a008.

Mesbah, A., Kramer, H.J., Huesman, A.E., Van den Hof, P.M., 2009. A control
oriented study on the numerical solution of the population balance equation for
crystallization processes. Chem. Eng. Sci. 64 (20), 4262–4277. http://dx.doi.org/
10.1016/j.ces.2009.06.060.

Motz, S., Mitrović, A., Gilles, E.D., 2002. Comparison of numerical methods for the
simulation of dispersed phase systems. Chem. Eng. Sci. 57 (20), 4329–4344.
http://dx.doi.org/10.1016/S0009-2509(02)00349-4.

Myerson, A.S., Erdemir, D., Lee, A.Y. (Eds.), 2002. Handbook of Industrial Crystal-
lization, third ed. Elsevier, http://dx.doi.org/10.1016/B978-0-7506-7012-8.X5000-
9.

Nagy, Z.K., Fujiwara, M., Braatz, R.D., 2008. Modelling and control of combined cooling
and antisolvent crystallization processes. J. Process Control 18 (9), 856–864. http:
//dx.doi.org/10.1016/j.jprocont.2008.06.002.

Nishikawa, H., 2014. First-, second-, and third-order finite-volume schemes for dif-
fusion. J. Comput. Phys. 256, 791–805. http://dx.doi.org/10.1016/j.jcp.2013.09.
024.

Pilon, L., Viskanta, R., 2003. Modified method of characteristics for solving population
balance equations. Internat. J. Numer. Methods Fluids 42 (11), 1211–1236. http:
//dx.doi.org/10.1002/fld.586.

Püttmann, A., Schnittert, S., Leweke, S., von Lieres, E., 2016. Utilizing algorithmic
differentiation to efficiently compute chromatograms and parameter sensitivities.
Chem. Eng. Sci. 139, 152–162. http://dx.doi.org/10.1016/j.ces.2015.08.050.

Püttmann, A., Schnittert, S., Naumann, U., von Lieres, E., 2013. Fast and accurate
parameter sensitivities for the general rate model of column liquid chromatography.
Comput. Chem. Eng. 56, 46–57. http://dx.doi.org/10.1016/j.compchemeng.2013.
04.021.

Qamar, S., Elsner, M.P., Angelov, I.A., Warnecke, G., Seidel-Morgenstern, A., 2006.
A comparative study of high resolution schemes for solving population balances
in crystallization. Comput. Chem. Eng. 30 (6–7), 1119–1131. http://dx.doi.org/10.
1016/j.compchemeng.2006.02.012.

Qamar, S., Warnecke, G., Elsner, M.P., 2009. On the solution of population balances
for nucleation, growth, aggregation and breakage processes. Chem. Eng. Sci. 64
(9), 2088–2095. http://dx.doi.org/10.1016/j.ces.2009.01.040.

Ramkrishna, D., 2000. Population Balances: Theory and Applications to Particulate
Systems in Engineering. Academic Press, p. 355. http://dx.doi.org/10.1016/B978-
0-12-576970-9.X5000-0.

Randolph, A., Larson, M., 1988. Theory of Particulate Processes, second ed. Elsevier,
p. 369. http://dx.doi.org/10.1016/B978-0-12-579652-1.X5001-7.

Randolph, A.D., White, E.T., 1977. Modeling size dispersion in the prediction of crystal-
size distribution. Chem. Eng. Sci. 32 (9), 1067–1076. http://dx.doi.org/10.1016/
0009-2509(77)80144-9.

Raphael, M., Rohani, S., 1999. Sunflower protein precipitation in a tubular precipitator.
Can. J. Chem. Eng. 77 (3), 540–554. http://dx.doi.org/10.1002/cjce.5450770315.

Rothstein, F., 1993. Differential precipitation of proteins. In: Harrison, R.G. (Ed.),
Protein Purif. Process Eng., first ed. Routledge, p. 94. http://dx.doi.org/10.1201/
9780203741733, URL: https://www.taylorfrancis.com/books/9781351421010.

http://dx.doi.org/10.1016/j.compchemeng.2023.108340
http://dx.doi.org/10.1016/j.compchemeng.2023.108340
http://dx.doi.org/10.1016/j.compchemeng.2023.108340
https://www.sciencedirect.com/science/article/pii/S0098135423002107
https://www.sciencedirect.com/science/article/pii/S0098135423002107
https://www.sciencedirect.com/science/article/pii/S0098135423002107
http://dx.doi.org/10.1002/bit.26922
http://dx.doi.org/10.1021/cg0606343
https://pubs.acs.org/doi/10.1021/cg0606343
https://pubs.acs.org/doi/10.1021/cg0606343
https://pubs.acs.org/doi/10.1021/cg0606343
http://dx.doi.org/10.1006/jcph.1999.6369
http://dx.doi.org/10.1002/aic.690130104
http://dx.doi.org/10.1002/aic.690130104
http://dx.doi.org/10.1002/aic.690130104
http://dx.doi.org/10.1007/s10915-015-0123-3
http://dx.doi.org/10.1007/s10915-015-0123-3
http://dx.doi.org/10.1007/s10915-015-0123-3
http://arxiv.org/abs/1503.00736
http://dx.doi.org/10.1016/j.apnum.2009.12.001
http://dx.doi.org/10.1016/j.apnum.2009.12.001
http://dx.doi.org/10.1016/j.apnum.2009.12.001
http://dx.doi.org/10.1016/j.ces.2012.03.041
http://dx.doi.org/10.1002/aic.690220512
http://dx.doi.org/10.1002/aic.690220512
http://dx.doi.org/10.1002/aic.690220512
http://dx.doi.org/10.1029/WR005i004p00830
http://doi.wiley.com/10.1029/WR005i004p00830
http://doi.wiley.com/10.1029/WR005i004p00830
http://doi.wiley.com/10.1029/WR005i004p00830
http://dx.doi.org/10.1002/btpr.3041
http://dx.doi.org/10.1002/btpr.3041
http://dx.doi.org/10.1002/btpr.3041
http://dx.doi.org/10.1002/aic.10228
http://dx.doi.org/10.1002/aic.10228
http://dx.doi.org/10.1002/aic.10228
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb21
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb21
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb21
http://dx.doi.org/10.1002/aic.11644
https://onlinelibrary.wiley.com/doi/10.1002/aic.11644
https://onlinelibrary.wiley.com/doi/10.1002/aic.11644
https://onlinelibrary.wiley.com/doi/10.1002/aic.11644
http://dx.doi.org/10.1002/fld.2700
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
https://onlinelibrary.wiley.com/doi/10.1002/fld.2700
https://hdl.handle.net/2440/19087
https://hdl.handle.net/2440/19087
https://hdl.handle.net/2440/19087
http://dx.doi.org/10.1016/0009-2509(64)85047-8
http://dx.doi.org/10.1039/c8ce00042e
http://dx.doi.org/10.1039/c8ce00042e
http://dx.doi.org/10.1039/c8ce00042e
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1016/j.powtec.2007.05.028
http://dx.doi.org/10.1016/j.powtec.2007.05.028
http://dx.doi.org/10.1016/j.powtec.2007.05.028
http://dx.doi.org/10.1016/S0009-2509(97)00307-2
http://dx.doi.org/10.1002/aic.690310110
http://dx.doi.org/10.1002/aic.690310110
http://dx.doi.org/10.1002/aic.690310110
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb31
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb31
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb31
http://dx.doi.org/10.1017/CBO9780511791253
http://dx.doi.org/10.1016/j.compchemeng.2018.02.025
http://dx.doi.org/10.1016/j.compchemeng.2018.02.025
http://dx.doi.org/10.1016/j.compchemeng.2018.02.025
http://dx.doi.org/10.1002/btpr.2886
http://dx.doi.org/10.1016/S0009-2509(02)00236-1
http://dx.doi.org/10.1016/S0009-2509(02)00114-8
http://dx.doi.org/10.1016/S0009-2509(02)00114-8
http://dx.doi.org/10.1016/S0009-2509(02)00114-8
http://dx.doi.org/10.1006/jcph.1994.1187
http://link.springer.com/10.1007/978-3-642-60543-7_
http://dx.doi.org/10.1016/S0009-2509(01)00427-4
http://dx.doi.org/10.1016/j.ces.2011.04.041
http://dx.doi.org/10.1016/S0098-1354(01)00710-4
http://dx.doi.org/10.1016/0009-2509(88)87126-4
http://dx.doi.org/10.1016/0009-2509(88)87126-4
http://dx.doi.org/10.1016/0009-2509(88)87126-4
http://dx.doi.org/10.1002/aic.690490517
http://dx.doi.org/10.1103/PhysRev.23.412
https://link.aps.org/doi/10.1103/PhysRev.23.412
https://link.aps.org/doi/10.1103/PhysRev.23.412
https://link.aps.org/doi/10.1103/PhysRev.23.412
http://dx.doi.org/10.1021/ie50229a008
http://dx.doi.org/10.1016/j.ces.2009.06.060
http://dx.doi.org/10.1016/j.ces.2009.06.060
http://dx.doi.org/10.1016/j.ces.2009.06.060
http://dx.doi.org/10.1016/S0009-2509(02)00349-4
http://dx.doi.org/10.1016/B978-0-7506-7012-8.X5000-9
http://dx.doi.org/10.1016/B978-0-7506-7012-8.X5000-9
http://dx.doi.org/10.1016/B978-0-7506-7012-8.X5000-9
http://dx.doi.org/10.1016/j.jprocont.2008.06.002
http://dx.doi.org/10.1016/j.jprocont.2008.06.002
http://dx.doi.org/10.1016/j.jprocont.2008.06.002
http://dx.doi.org/10.1016/j.jcp.2013.09.024
http://dx.doi.org/10.1016/j.jcp.2013.09.024
http://dx.doi.org/10.1016/j.jcp.2013.09.024
http://dx.doi.org/10.1002/fld.586
http://dx.doi.org/10.1002/fld.586
http://dx.doi.org/10.1002/fld.586
http://dx.doi.org/10.1016/j.ces.2015.08.050
http://dx.doi.org/10.1016/j.compchemeng.2013.04.021
http://dx.doi.org/10.1016/j.compchemeng.2013.04.021
http://dx.doi.org/10.1016/j.compchemeng.2013.04.021
http://dx.doi.org/10.1016/j.compchemeng.2006.02.012
http://dx.doi.org/10.1016/j.compchemeng.2006.02.012
http://dx.doi.org/10.1016/j.compchemeng.2006.02.012
http://dx.doi.org/10.1016/j.ces.2009.01.040
http://dx.doi.org/10.1016/B978-0-12-576970-9.X5000-0
http://dx.doi.org/10.1016/B978-0-12-576970-9.X5000-0
http://dx.doi.org/10.1016/B978-0-12-576970-9.X5000-0
http://dx.doi.org/10.1016/B978-0-12-579652-1.X5001-7
http://dx.doi.org/10.1016/0009-2509(77)80144-9
http://dx.doi.org/10.1016/0009-2509(77)80144-9
http://dx.doi.org/10.1016/0009-2509(77)80144-9
http://dx.doi.org/10.1002/cjce.5450770315
http://dx.doi.org/10.1201/9780203741733
http://dx.doi.org/10.1201/9780203741733
http://dx.doi.org/10.1201/9780203741733
https://www.taylorfrancis.com/books/9781351421010


Computers and Chemical Engineering 183 (2024) 108612W. Zhang et al.
Saleemi, A.N., Rielly, C.D., Nagy, Z.K., 2012. Comparative investigation of supersatu-
ration and automated direct nucleation control of crystal size distributions using
ATR-UV/vis spectroscopy and FBRM. Cryst. Growth Des. 12 (4), 1792–1807.
http://dx.doi.org/10.1021/cg201269c.

Shu, C.-W., 1998. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
Schemes for Hyperbolic Conservation Laws, (no. 97), pp. 325–432. http://dx.doi.
org/10.1007/BFb0096355, URL: http://link.springer.com/10.1007/BFb0096355.

Smit, J., Van Sint Annaland, M., Kuipers, J.A., 2005. Grid adaptation with WENO
schemes for non-uniform grids to solve convection-dominated partial differential
equations. Chem. Eng. Sci. 60 (10), 2609–2619. http://dx.doi.org/10.1016/j.ces.
2004.12.017.

Smith, M., Matsoukas, T., 1998. Constant-number Monte Carlo simulation of population
balances. Chem. Eng. Sci. 53 (9), 1777–1786. http://dx.doi.org/10.1016/S0009-
2509(98)00045-1.

Srisanga, S., Flood, A.E., Galbraith, S.C., Rugmai, S., Soontaranon, S., Ulrich, J., 2015.
Crystal growth rate dispersion versus size-dependent crystal growth: Appropriate
modeling for crystallization processes. Cryst. Growth Des. 15 (5), 2330–2336.
http://dx.doi.org/10.1021/acs.cgd.5b00126.

Svärd, M., Gong, J., Nordström, J., 2008. An accuracy evaluation of unstructured
node-centred finite volume methods. Appl. Numer. Math. 58 (8), 1142–1158.
http://dx.doi.org/10.1016/j.apnum.2007.05.002.

Turkel, E., 1986. Accuracy of schemes with nonuniform meshes for compressible fluid
flows. Appl. Numer. Math. 2 (6), 529–550.
20
van Genuchten, M., Alves, W., 1984. Analytical Solutions of the One-Dimensional
Convective-Dispersive Solute Transport Equation. In: Agric. Water Manag., vol. 9,
(no. 1), pp. 79–80. http://dx.doi.org/10.1016/0378-3774(84)90020-9.

von Lieres, E., Andersson, J., 2010. A fast and accurate solver for the general rate
model of column liquid chromatography. Comput. Chem. Eng. 34 (8), 1180–1191.
http://dx.doi.org/10.1016/j.compchemeng.2010.03.008.

Wellner, J., 2016. Comparison of finite volume high-order schemes for the two-
dimensional Euler equations. In: Proceedings of the 7th European Congress on
Computational Methods in Applied Sciences and Engineering.

Wood, B., Girard, K.P., Polster, C.S., Croker, D.M., 2019. Progress to date in the
design and operation of continuous crystallization processes for pharmaceutical
applications. Org. Process Res. Dev. 23 (2), 122–144. http://dx.doi.org/10.1021/
acs.oprd.8b00319.

Woodward, C.S., Balos, C.J., 2021. User Documentation for Idas V4.7.0. Technical
Report, Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, p. 465.

Xing, Y., Shu, C.W., 2006. High order well-balanced finite volume WENO schemes and
discontinuous Galerkin methods for a class of hyperbolic systems with source terms.
J. Comput. Phys. 214 (2), 567–598. http://dx.doi.org/10.1016/j.jcp.2005.10.005.

Yuan, C., Laurent, F., Fox, R.O., 2012. An extended quadrature method of moments for
population balance equations. J. Aerosol Sci. 51, 1–23. http://dx.doi.org/10.1016/
j.jaerosci.2012.04.003.

http://dx.doi.org/10.1021/cg201269c
http://dx.doi.org/10.1007/BFb0096355
http://dx.doi.org/10.1007/BFb0096355
http://dx.doi.org/10.1007/BFb0096355
http://link.springer.com/10.1007/BFb0096355
http://dx.doi.org/10.1016/j.ces.2004.12.017
http://dx.doi.org/10.1016/j.ces.2004.12.017
http://dx.doi.org/10.1016/j.ces.2004.12.017
http://dx.doi.org/10.1016/S0009-2509(98)00045-1
http://dx.doi.org/10.1016/S0009-2509(98)00045-1
http://dx.doi.org/10.1016/S0009-2509(98)00045-1
http://dx.doi.org/10.1021/acs.cgd.5b00126
http://dx.doi.org/10.1016/j.apnum.2007.05.002
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb66
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb66
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb66
http://dx.doi.org/10.1016/0378-3774(84)90020-9
http://dx.doi.org/10.1016/j.compchemeng.2010.03.008
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb69
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb69
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb69
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb69
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb69
http://dx.doi.org/10.1021/acs.oprd.8b00319
http://dx.doi.org/10.1021/acs.oprd.8b00319
http://dx.doi.org/10.1021/acs.oprd.8b00319
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb71
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb71
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb71
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb71
http://refhub.elsevier.com/S0098-1354(24)00030-9/sb71
http://dx.doi.org/10.1016/j.jcp.2005.10.005
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003
http://dx.doi.org/10.1016/j.jaerosci.2012.04.003

	Solving crystallization/precipitation population balance models in CADET, part I: Nucleation growth and growth rate dispersion in batch and continuous modes on nonuniform grids
	Introduction
	The population balance model
	Governing equations
	PBM in a batch or continuous stirred-tank reactor (BSTR or CSTR)
	PBM in a dispersive plug flow reactor (DPFR)

	Constitutive equations

	Finite Volume Method Discretization
	One dimensional discretization: internal coordinate x
	Two dimensional discretization: internal coordinate x and external coordinate z

	Flux reconstruction on uniform and nonuniform grids
	Upwind scheme
	High-resolution scheme by Koren
	Weighted essentially non-oscillatory scheme

	Time integrator
	Implementation and numerical experiments
	Case 1: size-independent growth
	Case 2: size-dependent growth
	Case 3: size-independent growth with nucleation
	Case 4: size-independent growth, nucleation and growth rate dispersion
	Case 5: isothermal seeded crystallization in a BSTR
	Case 6: DPFR with a first-order reaction
	Case 7: isothermal continuous precipitation in a DPFR
	Case 7A: particles are born as critical nuclei
	Case 7B: particles are born with an intrinsic log-normal distribution


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


