001023023 001__ 1023023
001023023 005__ 20250204113803.0
001023023 0247_ $$2doi$$a10.1016/j.firesaf.2024.104110
001023023 0247_ $$2ISSN$$a0378-7761
001023023 0247_ $$2ISSN$$a0379-7112
001023023 0247_ $$2ISSN$$a1873-7226
001023023 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01606
001023023 0247_ $$2WOS$$aWOS:001199438400001
001023023 037__ $$aFZJ-2024-01606
001023023 082__ $$a690
001023023 1001_ $$0P:(DE-Juel1)185003$$aGnendiger, Christoph$$b0$$ufzj
001023023 245__ $$aExtinction coefficients from aerosol measurements
001023023 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001023023 3367_ $$2DRIVER$$aarticle
001023023 3367_ $$2DataCite$$aOutput Types/Journal article
001023023 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708422131_11398
001023023 3367_ $$2BibTeX$$aARTICLE
001023023 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023023 3367_ $$00$$2EndNote$$aJournal Article
001023023 520__ $$aIn this contribution, we develop a model that describes light extinction in the presence of arbitrary aerosols. In doing so, we take advantage of the fact that during measurements with the ELPI+-system, aerosol particles of any shape are internally mapped to spherical surrogates. The developed model is particularly simple and depends on only a few parameters, namely on densities and refractive indices of the measured aerosol particles. As proof of principle, the model is in first applications used to determine extinction coefficients and mass-specific extinction for an infrared light source with a peak wave length of 880 nm. Detailed studies concentrate on two aerosols exemplary for characteristic values of the input parameters: a paraffin aerosol in a bench-scale setup and soot from a flaming n-heptane fire in a room-scale setup (test fire TF5 according to EN54). As main results, we find values for mass-specific extinction that are different in the considered cases. Moreover, obtained results differ in part more than a factor of three from literature values typically used in practical applications. We explicitly assess reasons for deviations found and finally propose a simple way how future light-extinction studies can be performed comparatively easily using the ELPI+-system.
001023023 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001023023 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023023 7001_ $$0P:(DE-HGF)0$$aSchultze, Thorsten$$b1
001023023 7001_ $$0P:(DE-HGF)0$$aBörger, Kristian$$b2
001023023 7001_ $$0P:(DE-Juel1)138417$$aBelt, Alexander$$b3$$ufzj
001023023 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b4$$eCorresponding author
001023023 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2024.104110$$gp. 104110 -$$p104110 -$$tFire safety journal$$v146$$x0378-7761$$y2024
001023023 8564_ $$uhttps://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.pdf$$yOpenAccess
001023023 8564_ $$uhttps://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.gif?subformat=icon$$xicon$$yOpenAccess
001023023 8564_ $$uhttps://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023023 8564_ $$uhttps://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023023 8564_ $$uhttps://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023023 8767_ $$d2024-02-14$$eHybrid-OA$$jDEAL
001023023 909CO $$ooai:juser.fz-juelich.de:1023023$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001023023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185003$$aForschungszentrum Jülich$$b0$$kFZJ
001023023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138417$$aForschungszentrum Jülich$$b3$$kFZJ
001023023 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b4$$kFZJ
001023023 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001023023 9141_ $$y2024
001023023 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023023 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023023 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001023023 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023023 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001023023 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001023023 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-06
001023023 920__ $$lyes
001023023 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001023023 980__ $$ajournal
001023023 980__ $$aVDB
001023023 980__ $$aUNRESTRICTED
001023023 980__ $$aI:(DE-Juel1)IAS-7-20180321
001023023 980__ $$aAPC
001023023 9801_ $$aAPC
001023023 9801_ $$aFullTexts