001     1023023
005     20250204113803.0
024 7 _ |a 10.1016/j.firesaf.2024.104110
|2 doi
024 7 _ |a 0378-7761
|2 ISSN
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01606
|2 datacite_doi
024 7 _ |a WOS:001199438400001
|2 WOS
037 _ _ |a FZJ-2024-01606
082 _ _ |a 690
100 1 _ |a Gnendiger, Christoph
|0 P:(DE-Juel1)185003
|b 0
|u fzj
245 _ _ |a Extinction coefficients from aerosol measurements
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708422131_11398
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this contribution, we develop a model that describes light extinction in the presence of arbitrary aerosols. In doing so, we take advantage of the fact that during measurements with the ELPI+-system, aerosol particles of any shape are internally mapped to spherical surrogates. The developed model is particularly simple and depends on only a few parameters, namely on densities and refractive indices of the measured aerosol particles. As proof of principle, the model is in first applications used to determine extinction coefficients and mass-specific extinction for an infrared light source with a peak wave length of 880 nm. Detailed studies concentrate on two aerosols exemplary for characteristic values of the input parameters: a paraffin aerosol in a bench-scale setup and soot from a flaming n-heptane fire in a room-scale setup (test fire TF5 according to EN54). As main results, we find values for mass-specific extinction that are different in the considered cases. Moreover, obtained results differ in part more than a factor of three from literature values typically used in practical applications. We explicitly assess reasons for deviations found and finally propose a simple way how future light-extinction studies can be performed comparatively easily using the ELPI+-system.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schultze, Thorsten
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Börger, Kristian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Belt, Alexander
|0 P:(DE-Juel1)138417
|b 3
|u fzj
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.firesaf.2024.104110
|g p. 104110 -
|0 PERI:(DE-600)1483569-1
|p 104110 -
|t Fire safety journal
|v 146
|y 2024
|x 0378-7761
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023023/files/1-s2.0-S0379711224000225-main-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023023
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185003
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21