001023044 001__ 1023044
001023044 005__ 20240226075501.0
001023044 0247_ $$2doi$$a10.48550/ARXIV.2312.17694
001023044 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01625
001023044 037__ $$aFZJ-2024-01625
001023044 1001_ $$0P:(DE-Juel1)196668$$aVolmer, Mats$$b0$$ufzj
001023044 245__ $$aMapping of valley-splitting by conveyor-mode spin-coherent electron shuttling
001023044 260__ $$barXiv$$c2023
001023044 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1708006162_795
001023044 3367_ $$2ORCID$$aWORKING_PAPER
001023044 3367_ $$028$$2EndNote$$aElectronic Article
001023044 3367_ $$2DRIVER$$apreprint
001023044 3367_ $$2BibTeX$$aARTICLE
001023044 3367_ $$2DataCite$$aOutput Types/Working Paper
001023044 520__ $$aIn Si/SiGe heterostructures, the low-lying excited valley state seriously limit operability and scalability of electron spin qubits. For characterizing and understanding the local variations in valley splitting, fast probing methods with high spatial and energy resolution are lacking. Leveraging the spatial control granted by conveyor-mode spin-coherent electron shuttling, we introduce a method for two-dimensional mapping of the local valley splitting by detecting magnetic field dependent anticrossings of ground and excited valley states using entangled electron spin-pairs as a probe. The method has sub-μeV energy accuracy and a nanometer lateral resolution. The histogram of valley splittings spanning a large area of 210 nm by 18 nm matches well with statistics obtained by the established but time-consuming magnetospectroscopy method. For the specific heterostructure, we find a nearly Gaussian distribution of valley splittings and a correlation length similar to the quantum dot size. Our mapping method may become a valuable tool for engineering Si/SiGe heterostructures for scalable quantum computing.
001023044 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001023044 588__ $$aDataset connected to DataCite
001023044 650_7 $$2Other$$aQuantum Physics (quant-ph)
001023044 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001023044 650_7 $$2Other$$aFOS: Physical sciences
001023044 7001_ $$0P:(DE-Juel1)196096$$aStruck, Tom$$b1$$ufzj
001023044 7001_ $$aSala, Arnau$$b2
001023044 7001_ $$aChen, Bingjie$$b3
001023044 7001_ $$aOberländer, Max$$b4
001023044 7001_ $$aOffermann, Tobias$$b5
001023044 7001_ $$aXue, Ran$$b6
001023044 7001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b7$$ufzj
001023044 7001_ $$aTu, Jhih-Sian$$b8
001023044 7001_ $$aTrellenkamp, Stefan$$b9
001023044 7001_ $$aCywiński, Łukasz$$b10
001023044 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b11$$ufzj
001023044 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars R.$$b12$$eCorresponding author
001023044 773__ $$a10.48550/ARXIV.2312.17694
001023044 8564_ $$uhttps://juser.fz-juelich.de/record/1023044/files/2312.17694.pdf$$yOpenAccess
001023044 8564_ $$uhttps://juser.fz-juelich.de/record/1023044/files/2312.17694.gif?subformat=icon$$xicon$$yOpenAccess
001023044 8564_ $$uhttps://juser.fz-juelich.de/record/1023044/files/2312.17694.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023044 8564_ $$uhttps://juser.fz-juelich.de/record/1023044/files/2312.17694.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023044 8564_ $$uhttps://juser.fz-juelich.de/record/1023044/files/2312.17694.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023044 909CO $$ooai:juser.fz-juelich.de:1023044$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196668$$aForschungszentrum Jülich$$b0$$kFZJ
001023044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196096$$aForschungszentrum Jülich$$b1$$kFZJ
001023044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b7$$kFZJ
001023044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b11$$kFZJ
001023044 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b12$$kFZJ
001023044 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001023044 9141_ $$y2023
001023044 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023044 920__ $$lyes
001023044 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001023044 980__ $$apreprint
001023044 980__ $$aVDB
001023044 980__ $$aUNRESTRICTED
001023044 980__ $$aI:(DE-Juel1)PGI-11-20170113
001023044 9801_ $$aFullTexts