001     1023070
005     20250203103434.0
024 7 _ |a 10.1103/PhysRevApplied.20.024021
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01643
|2 datacite_doi
024 7 _ |a WOS:001052945100001
|2 WOS
037 _ _ |a FZJ-2024-01643
082 _ _ |a 530
100 1 _ |a Corley-Wiciak, Agnieszka Anna
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Local Alloy Order in a Ge 1 − x Sn x / Ge Epitaxial Layer
260 _ _ |a College Park, Md. [u.a.]
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709019301_29983
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The local ordering of atoms in alloys directly has a strong impact on their electronic and opticalproperties. This is particularly relevant in nonrandom alloys, especially if they are deposited far fromthe equilibrium processes, as is the case for epitaxial Ge1−xSnx layers. In this work, we investigate thearrangement of Ge and Sn atoms in optoelectronic grade Ge1−xSnx epitaxial layers featuring a Sn contentin the 5–14% range by using polarization-dependent Raman spectroscopy and density-functional-theorycalculations. The thorough analysis of the polarization-dependent spectra in parallel and perpendicularconfiguration allowed us to properly tag all the observed vibrational modes, and to shed light on that associatedto disorder-assisted Raman transitions. Indeed, with the help of large-scale atomistic simulations,we were able to highlight how the presence of Sn atoms, that modify the local environments of Ge atoms,gives rise to two spectral features at different Raman shifts, corresponding to distortions of the atomicbonds. This analysis provides a valuable framework for advancing the understanding of the vibrationalproperties in Ge1−xSnx alloys, particularly with regard to the impact of local ordering of the differentatomic species.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Chen, Shunda
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Concepción, Omar
|0 P:(DE-Juel1)188576
|b 2
700 1 _ |a Zoellner, Marvin Hartwig
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 4
|u fzj
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 5
700 1 _ |a Li, Tianshu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Spirito, Davide
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.20.024021
|g Vol. 20, no. 2, p. 024021
|0 PERI:(DE-600)2760310-6
|n 2
|p 024021
|t Physical review applied
|v 20
|y 2023
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023070/files/PhysRevApplied.20.024021.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023070/files/PhysRevApplied.20.024021.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023070/files/PhysRevApplied.20.024021.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023070/files/PhysRevApplied.20.024021.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023070/files/PhysRevApplied.20.024021.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023070
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a George Washington University
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125569
910 1 _ |a George Washington University
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a IHP – Leibniz-Institut für innovative Mikroelektronik
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a IHP – Leibniz-Institut für innovative Mikroelektronik
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21