001023072 001__ 1023072
001023072 005__ 20250203103434.0
001023072 0247_ $$2doi$$a10.1063/5.0167407
001023072 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01645
001023072 0247_ $$2WOS$$aWOS:001099555300003
001023072 037__ $$aFZJ-2024-01645
001023072 082__ $$a600
001023072 1001_ $$0P:(DE-HGF)0$$aMartínez, Karí$$b0$$eCorresponding author
001023072 245__ $$aIn situ TEM heating experiments on thin epitaxial GeSn layers: Modes of phase separation
001023072 260__ $$aMelville, NY$$bAIP Publ.$$c2023
001023072 3367_ $$2DRIVER$$aarticle
001023072 3367_ $$2DataCite$$aOutput Types/Journal article
001023072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709020247_4278
001023072 3367_ $$2BibTeX$$aARTICLE
001023072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023072 3367_ $$00$$2EndNote$$aJournal Article
001023072 520__ $$aThe thermal stability of GeSn epitaxial thin films was investigated via in situ transmission electron microscopy (TEM). Samples were grown with a similar layer structure and 10 at.% Sn content by either molecular beam epitaxy or chemical vapor deposition. Despite the same layer thickness and concentration, the decomposition mode differs dramatically for each GeSn sample during annealing experiments. We observed that the sample with a Ge buffer on a Ge substrate is structurally stable up to 500 °C, while above this temperature, β-Sn precipitates appear, indicating a decomposition mechanism of solid-state precipitation. On the other hand, the second sample exhibited high susceptibility to Ga ion incorporation during the focused ion beam TEM specimen preparation, which is attributed to a high defect density owing to an atypically thin Ge buffer layer grown on a Si substrate. In this case, the efficient phase separation in the sample was facilitated by Ga contamination, promoting the appearance of a GaSn-based liquid phase at a temperature as low as 200 °C. The decomposition temperatures found and the occurrence of the two different decomposition modes are discussed in relation to the experimental methods used.
001023072 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001023072 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023072 7001_ $$0P:(DE-HGF)0$$aMinenkov, Alexey$$b1
001023072 7001_ $$0P:(DE-HGF)0$$aAberl, Johannes$$b2
001023072 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b3
001023072 7001_ $$0P:(DE-HGF)0$$aBrehm, Moritz$$b4
001023072 7001_ $$0P:(DE-HGF)0$$aGroiss, Heiko$$b5
001023072 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0167407$$gVol. 11, no. 10, p. 101117$$n10$$p101117$$tAPL materials$$v11$$x2166-532X$$y2023
001023072 8564_ $$uhttps://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.pdf$$yOpenAccess
001023072 8564_ $$uhttps://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.gif?subformat=icon$$xicon$$yOpenAccess
001023072 8564_ $$uhttps://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023072 8564_ $$uhttps://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023072 8564_ $$uhttps://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023072 909CO $$ooai:juser.fz-juelich.de:1023072$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023072 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b3$$kFZJ
001023072 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001023072 9141_ $$y2024
001023072 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023072 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023072 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2022$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-26T11:52:04Z
001023072 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-26T11:52:04Z
001023072 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2018-07-26T11:52:04Z
001023072 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001023072 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPL MATER : 2022$$d2023-10-26
001023072 920__ $$lyes
001023072 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001023072 980__ $$ajournal
001023072 980__ $$aVDB
001023072 980__ $$aUNRESTRICTED
001023072 980__ $$aI:(DE-Juel1)PGI-9-20110106
001023072 9801_ $$aFullTexts