001     1023072
005     20250203103434.0
024 7 _ |a 10.1063/5.0167407
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01645
|2 datacite_doi
024 7 _ |a WOS:001099555300003
|2 WOS
037 _ _ |a FZJ-2024-01645
082 _ _ |a 600
100 1 _ |a Martínez, Karí
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a In situ TEM heating experiments on thin epitaxial GeSn layers: Modes of phase separation
260 _ _ |a Melville, NY
|c 2023
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709020247_4278
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The thermal stability of GeSn epitaxial thin films was investigated via in situ transmission electron microscopy (TEM). Samples were grown with a similar layer structure and 10 at.% Sn content by either molecular beam epitaxy or chemical vapor deposition. Despite the same layer thickness and concentration, the decomposition mode differs dramatically for each GeSn sample during annealing experiments. We observed that the sample with a Ge buffer on a Ge substrate is structurally stable up to 500 °C, while above this temperature, β-Sn precipitates appear, indicating a decomposition mechanism of solid-state precipitation. On the other hand, the second sample exhibited high susceptibility to Ga ion incorporation during the focused ion beam TEM specimen preparation, which is attributed to a high defect density owing to an atypically thin Ge buffer layer grown on a Si substrate. In this case, the efficient phase separation in the sample was facilitated by Ga contamination, promoting the appearance of a GaSn-based liquid phase at a temperature as low as 200 °C. The decomposition temperatures found and the occurrence of the two different decomposition modes are discussed in relation to the experimental methods used.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Minenkov, Alexey
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Aberl, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 3
700 1 _ |a Brehm, Moritz
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Groiss, Heiko
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1063/5.0167407
|g Vol. 11, no. 10, p. 101117
|0 PERI:(DE-600)2722985-3
|n 10
|p 101117
|t APL materials
|v 11
|y 2023
|x 2166-532X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023072/files/2023%20In%20situ%20TEM%20Moritz-%20APL%20Materials.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023072
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2018-07-26T11:52:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2018-07-26T11:52:04Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2018-07-26T11:52:04Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APL MATER : 2022
|d 2023-10-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21