001023073 001__ 1023073 001023073 005__ 20250203103404.0 001023073 0247_ $$2doi$$a10.1149/2162-8777/acd720 001023073 0247_ $$2ISSN$$a2162-8769 001023073 0247_ $$2ISSN$$a2162-8777 001023073 0247_ $$2WOS$$aWOS:000999127900001 001023073 037__ $$aFZJ-2024-01646 001023073 082__ $$a660 001023073 1001_ $$0P:(DE-HGF)0$$aFrauenrath, M.$$b0$$eCorresponding author 001023073 245__ $$aAdvances in In Situ Boron and Phosphorous Doping of SiGeSn 001023073 260__ $$aPennington, NJ$$bECS$$c2023 001023073 3367_ $$2DRIVER$$aarticle 001023073 3367_ $$2DataCite$$aOutput Types/Journal article 001023073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709021315_548 001023073 3367_ $$2BibTeX$$aARTICLE 001023073 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001023073 3367_ $$00$$2EndNote$$aJournal Article 001023073 520__ $$aDopant concentrations higher than 1 × 1019 cm−3 are required to improve the performances of various GeSn based devices such as photodetectors, electrically pumped lasers and so on. In this study, the in situ Boron and Phosphorous doping of SiGeSn was investigated, building upon recent studies on in situ B or P doped GeSn. The surfaces of intrinsic and lowly doped pseudomorphic SiGeSn layers were rough. By contrast, a 〈110〉 cross hatch was recovered and surfaces as smooth as the Ge Strain-Relaxed Buffers underneath were obtained for the highest B2H6 or PH3 mass-flows. The surface Root Mean Square roughness and Zrange values were then as low as 0.36 nm and 2.86 nm for SiGeSn:B, and 0.47 nm and 4.60 nm for SiGeSn:P. In addition, Si contents as high as 25% were obtained, notably in SiGeSn:B layers. Dopants were almost fully electrically active in those SiGeSn:B and SiGeSn:P layers, with carrier concentrations as high as 2.0 × 1020 cm−3 and 2.7 × 1020 cm−3, respectively. For SiGeSn:P, the shortcoming of in situ doped GeSn:P was overcome, that is the formation of electrically inactive SnmPnV clusters for high PH3 mass-flows. Such electrically active carrier concentrations will be beneficial for (Si)GeSn based devices, but also for all Group-IV based devices with extremely low thermal budget constraints. 001023073 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0 001023073 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001023073 7001_ $$0P:(DE-Juel1)188576$$aConcepción Díaz, Omar$$b1$$ufzj 001023073 7001_ $$0P:(DE-HGF)0$$aGauthier, N.$$b2 001023073 7001_ $$0P:(DE-HGF)0$$aNolot, E.$$b3 001023073 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b4 001023073 7001_ $$0P:(DE-HGF)0$$aHartmann, J.-M.$$b5 001023073 773__ $$0PERI:(DE-600)2674149-0$$a10.1149/2162-8777/acd720$$gVol. 12, no. 6, p. 064001 -$$n6$$p064001 -$$tECS journal of solid state science and technology$$v12$$x2162-8769$$y2023 001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.pdf 001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.gif?subformat=icon$$xicon 001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-1440$$xicon-1440 001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-180$$xicon-180 001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-640$$xicon-640 001023073 909CO $$ooai:juser.fz-juelich.de:1023073$$pVDB 001023073 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern 001023073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b1$$kFZJ 001023073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b4$$kFZJ 001023073 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0 001023073 9141_ $$y2024 001023073 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bECS J SOLID STATE SC : 2022$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24 001023073 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24 001023073 920__ $$lyes 001023073 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 001023073 980__ $$ajournal 001023073 980__ $$aVDB 001023073 980__ $$aI:(DE-Juel1)PGI-9-20110106 001023073 980__ $$aUNRESTRICTED