001023073 001__ 1023073
001023073 005__ 20250203103404.0
001023073 0247_ $$2doi$$a10.1149/2162-8777/acd720
001023073 0247_ $$2ISSN$$a2162-8769
001023073 0247_ $$2ISSN$$a2162-8777
001023073 0247_ $$2WOS$$aWOS:000999127900001
001023073 037__ $$aFZJ-2024-01646
001023073 082__ $$a660
001023073 1001_ $$0P:(DE-HGF)0$$aFrauenrath, M.$$b0$$eCorresponding author
001023073 245__ $$aAdvances in In Situ Boron and Phosphorous Doping of SiGeSn
001023073 260__ $$aPennington, NJ$$bECS$$c2023
001023073 3367_ $$2DRIVER$$aarticle
001023073 3367_ $$2DataCite$$aOutput Types/Journal article
001023073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709021315_548
001023073 3367_ $$2BibTeX$$aARTICLE
001023073 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023073 3367_ $$00$$2EndNote$$aJournal Article
001023073 520__ $$aDopant concentrations higher than 1 × 1019 cm−3 are required to improve the performances of various GeSn based devices such as photodetectors, electrically pumped lasers and so on. In this study, the in situ Boron and Phosphorous doping of SiGeSn was investigated, building upon recent studies on in situ B or P doped GeSn. The surfaces of intrinsic and lowly doped pseudomorphic SiGeSn layers were rough. By contrast, a 〈110〉 cross hatch was recovered and surfaces as smooth as the Ge Strain-Relaxed Buffers underneath were obtained for the highest B2H6 or PH3 mass-flows. The surface Root Mean Square roughness and Zrange values were then as low as 0.36 nm and 2.86 nm for SiGeSn:B, and 0.47 nm and 4.60 nm for SiGeSn:P. In addition, Si contents as high as 25% were obtained, notably in SiGeSn:B layers. Dopants were almost fully electrically active in those SiGeSn:B and SiGeSn:P layers, with carrier concentrations as high as 2.0 × 1020 cm−3 and 2.7 × 1020 cm−3, respectively. For SiGeSn:P, the shortcoming of in situ doped GeSn:P was overcome, that is the formation of electrically inactive SnmPnV clusters for high PH3 mass-flows. Such electrically active carrier concentrations will be beneficial for (Si)GeSn based devices, but also for all Group-IV based devices with extremely low thermal budget constraints.
001023073 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001023073 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023073 7001_ $$0P:(DE-Juel1)188576$$aConcepción Díaz, Omar$$b1$$ufzj
001023073 7001_ $$0P:(DE-HGF)0$$aGauthier, N.$$b2
001023073 7001_ $$0P:(DE-HGF)0$$aNolot, E.$$b3
001023073 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b4
001023073 7001_ $$0P:(DE-HGF)0$$aHartmann, J.-M.$$b5
001023073 773__ $$0PERI:(DE-600)2674149-0$$a10.1149/2162-8777/acd720$$gVol. 12, no. 6, p. 064001 -$$n6$$p064001 -$$tECS journal of solid state science and technology$$v12$$x2162-8769$$y2023
001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.pdf
001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.gif?subformat=icon$$xicon
001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-1440$$xicon-1440
001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-180$$xicon-180
001023073 8564_ $$uhttps://juser.fz-juelich.de/record/1023073/files/Frauenrath_2023_ECS_J._Solid_State_Sci._Technol._12_064001.jpg?subformat=icon-640$$xicon-640
001023073 909CO $$ooai:juser.fz-juelich.de:1023073$$pVDB
001023073 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001023073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b1$$kFZJ
001023073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b4$$kFZJ
001023073 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001023073 9141_ $$y2024
001023073 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bECS J SOLID STATE SC : 2022$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001023073 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001023073 920__ $$lyes
001023073 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001023073 980__ $$ajournal
001023073 980__ $$aVDB
001023073 980__ $$aI:(DE-Juel1)PGI-9-20110106
001023073 980__ $$aUNRESTRICTED