001     1023085
005     20250204113805.0
024 7 _ |a 10.1103/PhysRevLett.132.076901
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01657
|2 datacite_doi
024 7 _ |a 38427860
|2 pmid
024 7 _ |a WOS:001182586900014
|2 WOS
037 _ _ |a FZJ-2024-01657
082 _ _ |a 530
100 1 _ |a Adamantopoulos, T.
|0 P:(DE-Juel1)186841
|b 0
|e Corresponding author
245 _ _ |a Orbital Rashba Effect as a Platform for Robust Orbital Photocurrents
260 _ _ |a College Park, Md.
|c 2024
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727697791_1469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Orbital current has emerged over the past years as one of the key novel concepts in magnetotransport. Here, we demonstrate that laser pulses can be used to generate large and robust nonrelativistic orbital currents in systems where the inversion symmetry is broken by the orbital Rashba effect. By referring to model and first principles tools, we demonstrate that orbital Rashba effect, accompanied by crystal field splitting, can mediate robust orbital photocurrents without a need for spin-orbit interaction even in metallic systems. We show that such nonrelativistic orbital photocurrents are translated into derivative photocurrents of spin when relativistic effects are taken into account. We thus promote orbital photocurrents as a promising platform for optical generation of currents of angular momentum, and discuss their possible applications.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
536 _ _ |a DFG project G:(GEPRIS)444844585 - Statische und dynamische Kopplung von Gitter- und magnetischen Eigenschaften in zweidimensionalen Materialien mit niedriger Symmetrie (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 2
536 _ _ |a COMRAD - Cold Opto-Magnetism for Random Access Devices (861300)
|0 G:(EU-Grant)861300
|c 861300
|f H2020-MSCA-ITN-2019
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Merte, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Go, D.
|0 P:(DE-Juel1)178993
|b 2
700 1 _ |a Freimuth, F.
|0 P:(DE-Juel1)130643
|b 3
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 4
700 1 _ |a Mokrousov, Y.
|0 P:(DE-Juel1)130848
|b 5
773 _ _ |a 10.1103/PhysRevLett.132.076901
|g Vol. 132, no. 7, p. 076901
|0 PERI:(DE-600)1472655-5
|n 7
|p 076901
|t Physical review letters
|v 132
|y 2024
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/INV_24_JAN_012891.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/PhysRevLett.132.076901.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/PhysRevLett.132.076901.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/PhysRevLett.132.076901.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/PhysRevLett.132.076901.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/PhysRevLett.132.076901.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/INV_24_JAN_012891.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/INV_24_JAN_012891.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/INV_24_JAN_012891.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1023085/files/INV_24_JAN_012891.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:1023085
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186841
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21