001023086 001__ 1023086
001023086 005__ 20250204113805.0
001023086 0247_ $$2doi$$a10.1021/acs.nanolett.4c00034
001023086 0247_ $$2ISSN$$a1530-6984
001023086 0247_ $$2ISSN$$a1530-6992
001023086 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01658
001023086 0247_ $$2pmid$$a38323579
001023086 0247_ $$2WOS$$aWOS:001173919100001
001023086 037__ $$aFZJ-2024-01658
001023086 082__ $$a660
001023086 1001_ $$0P:(DE-HGF)0$$aLi, Zhidong$$b0
001023086 245__ $$aElectrostatic Gating of Spin Dynamics of a Quasi-2D Kagome Magnet
001023086 260__ $$aWashington, DC$$bACS Publ.$$c2024
001023086 3367_ $$2DRIVER$$aarticle
001023086 3367_ $$2DataCite$$aOutput Types/Journal article
001023086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709890960_23485
001023086 3367_ $$2BibTeX$$aARTICLE
001023086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023086 3367_ $$00$$2EndNote$$aJournal Article
001023086 520__ $$aElectrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements. Moreover, the effective magnetization and gyromagnetic ratios display voltage-dependent variations. A closer examination reveals that the voltage-induced changes can modulate magnetocrystalline anisotropy by several hundred gauss, while the impact on orbital magnetization remains relatively subtle. Density functional theory (DFT) calculations reveal varying d-orbital hybridizations at different voltages. This research unveils intricate physics within the Kagome lattice magnet and further underscores the potential of electrostatic manipulation in steering magnetism with promising implications for the development of spintronic devices.
001023086 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001023086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023086 7001_ $$0P:(DE-HGF)0$$aZhang, Ruifu$$b1
001023086 7001_ $$0P:(DE-HGF)0$$aShan, Jun$$b2
001023086 7001_ $$0P:(DE-HGF)0$$aAlahmed, Laith$$b3
001023086 7001_ $$0P:(DE-HGF)0$$aXu, Ailing$$b4
001023086 7001_ $$0P:(DE-HGF)0$$aChen, Yuanping$$b5
001023086 7001_ $$0P:(DE-HGF)0$$aYuan, Jiaren$$b6
001023086 7001_ $$0P:(DE-HGF)0$$aCheng, Xiaomin$$b7$$eCorresponding author
001023086 7001_ $$0P:(DE-HGF)0$$aMiao, Xiangshui$$b8
001023086 7001_ $$0P:(DE-HGF)0$$aWen, Jiajia$$b9$$eCorresponding author
001023086 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b10$$ufzj
001023086 7001_ $$0P:(DE-HGF)0$$aLee, Young S.$$b11
001023086 7001_ $$0P:(DE-HGF)0$$aZhang, Lichuan$$b12$$eCorresponding author
001023086 7001_ $$0P:(DE-HGF)0$$aLi, Peng$$b13$$eCorresponding author
001023086 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c00034$$gp. acs.nanolett.4c00034$$n7$$p2415–2420$$tNano letters$$v24$$x1530-6984$$y2024
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.pdf
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.pdf$$yPublished on 2024-02-07. Available in OpenAccess from 2025-02-07.
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.gif?subformat=icon$$xicon$$yPublished on 2024-02-07. Available in OpenAccess from 2025-02-07.
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-02-07. Available in OpenAccess from 2025-02-07.
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-02-07. Available in OpenAccess from 2025-02-07.
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-02-07. Available in OpenAccess from 2025-02-07.
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.gif?subformat=icon$$xicon
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-1440$$xicon-1440
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-180$$xicon-180
001023086 8564_ $$uhttps://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-640$$xicon-640
001023086 909CO $$ooai:juser.fz-juelich.de:1023086$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China$$b0
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China$$b1
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China$$b2
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States$$b3
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China$$b4
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China$$b5
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China$$b6
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China$$b7
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China$$b8
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States$$b9
001023086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b10$$kFZJ
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130848$$a Institute of Physics, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany$$b10
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States$$b11
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China$$b12
001023086 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China$$b13
001023086 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001023086 9141_ $$y2024
001023086 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001023086 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001023086 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
001023086 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001023086 980__ $$ajournal
001023086 980__ $$aVDB
001023086 980__ $$aUNRESTRICTED
001023086 980__ $$aI:(DE-Juel1)PGI-1-20110106
001023086 9801_ $$aFullTexts