001     1023086
005     20250204113805.0
024 7 _ |a 10.1021/acs.nanolett.4c00034
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01658
|2 datacite_doi
024 7 _ |a 38323579
|2 pmid
024 7 _ |a WOS:001173919100001
|2 WOS
037 _ _ |a FZJ-2024-01658
082 _ _ |a 660
100 1 _ |a Li, Zhidong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electrostatic Gating of Spin Dynamics of a Quasi-2D Kagome Magnet
260 _ _ |a Washington, DC
|c 2024
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709890960_23485
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements. Moreover, the effective magnetization and gyromagnetic ratios display voltage-dependent variations. A closer examination reveals that the voltage-induced changes can modulate magnetocrystalline anisotropy by several hundred gauss, while the impact on orbital magnetization remains relatively subtle. Density functional theory (DFT) calculations reveal varying d-orbital hybridizations at different voltages. This research unveils intricate physics within the Kagome lattice magnet and further underscores the potential of electrostatic manipulation in steering magnetism with promising implications for the development of spintronic devices.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Ruifu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shan, Jun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alahmed, Laith
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Xu, Ailing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chen, Yuanping
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yuan, Jiaren
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cheng, Xiaomin
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Miao, Xiangshui
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wen, Jiajia
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 10
|u fzj
700 1 _ |a Lee, Young S.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zhang, Lichuan
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Li, Peng
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.4c00034
|g p. acs.nanolett.4c00034
|0 PERI:(DE-600)2048866-X
|n 7
|p 2415–2420
|t Nano letters
|v 24
|y 2024
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.pdf
856 4 _ |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07.
|u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.pdf
856 4 _ |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07.
|x icon
|u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.gif?subformat=icon
856 4 _ |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07.
|x icon-1440
|u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-1440
856 4 _ |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07.
|x icon-180
|u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-180
856 4 _ |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07.
|x icon-640
|u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-640
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023086
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130848
910 1 _ |a Institute of Physics, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-Juel1)130848
910 1 _ |a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21