Home > Publications database > Electrostatic Gating of Spin Dynamics of a Quasi-2D Kagome Magnet > print |
001 | 1023086 | ||
005 | 20250204113805.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.4c00034 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-01658 |2 datacite_doi |
024 | 7 | _ | |a 38323579 |2 pmid |
024 | 7 | _ | |a WOS:001173919100001 |2 WOS |
037 | _ | _ | |a FZJ-2024-01658 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Li, Zhidong |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Electrostatic Gating of Spin Dynamics of a Quasi-2D Kagome Magnet |
260 | _ | _ | |a Washington, DC |c 2024 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1709890960_23485 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Electrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements. Moreover, the effective magnetization and gyromagnetic ratios display voltage-dependent variations. A closer examination reveals that the voltage-induced changes can modulate magnetocrystalline anisotropy by several hundred gauss, while the impact on orbital magnetization remains relatively subtle. Density functional theory (DFT) calculations reveal varying d-orbital hybridizations at different voltages. This research unveils intricate physics within the Kagome lattice magnet and further underscores the potential of electrostatic manipulation in steering magnetism with promising implications for the development of spintronic devices. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zhang, Ruifu |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Shan, Jun |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Alahmed, Laith |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Xu, Ailing |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Chen, Yuanping |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Yuan, Jiaren |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Cheng, Xiaomin |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
700 | 1 | _ | |a Miao, Xiangshui |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Wen, Jiajia |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 10 |u fzj |
700 | 1 | _ | |a Lee, Young S. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Zhang, Lichuan |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
700 | 1 | _ | |a Li, Peng |0 P:(DE-HGF)0 |b 13 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.4c00034 |g p. acs.nanolett.4c00034 |0 PERI:(DE-600)2048866-X |n 7 |p 2415–2420 |t Nano letters |v 24 |y 2024 |x 1530-6984 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.pdf |
856 | 4 | _ | |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07. |u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.pdf |
856 | 4 | _ | |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07. |x icon |u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.gif?subformat=icon |
856 | 4 | _ | |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07. |x icon-1440 |u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-1440 |
856 | 4 | _ | |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07. |x icon-180 |u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-180 |
856 | 4 | _ | |y Published on 2024-02-07. Available in OpenAccess from 2025-02-07. |x icon-640 |u https://juser.fz-juelich.de/record/1023086/files/Lichuan-NanoLetter-Postprint-2023.jpg?subformat=icon-640 |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.gif?subformat=icon |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-1440 |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-180 |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/1023086/files/li-et-al-2024-electrostatic-gating-of-spin-dynamics-of-a-quasi-2d-kagome-magnet.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1023086 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China |0 I:(DE-HGF)0 |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a Institute of Physics, Johannes Gutenberg University Mainz, D-55099 Mainz, Germany |0 I:(DE-HGF)0 |b 10 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States Department of Applied Physics, Stanford University, Stanford, California 94305, United States |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Faculty of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China |0 I:(DE-HGF)0 |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Microelectronics, University of Science and Technology of China, Hefei 230026, China |0 I:(DE-HGF)0 |b 13 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|