001023109 001__ 1023109
001023109 005__ 20240619092102.0
001023109 037__ $$aFZJ-2024-01679
001023109 1001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b0$$eCorresponding author
001023109 1112_ $$aMLZ User Meeting 2022$$cMünchen$$d2022-12-08 - 2022-12-09$$wGermany
001023109 245__ $$aDetermination of the cooperativity length in glass forming liquids and polymers
001023109 260__ $$c2022
001023109 3367_ $$033$$2EndNote$$aConference Paper
001023109 3367_ $$2DataCite$$aOther
001023109 3367_ $$2BibTeX$$aINPROCEEDINGS
001023109 3367_ $$2DRIVER$$aconferenceObject
001023109 3367_ $$2ORCID$$aLECTURE_SPEECH
001023109 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1710761965_7614$$xInvited
001023109 520__ $$aAlthough the idea of a ‘cooperativity’ length scale ξ related to the glass transition is now wide-spread, there is much less consensus on whether this length scale can be related to thermodynamic fluctuations and, if yes, whether one has to consider temperature fluctuations δT. The crucial experiment to this end has to compare values of ξ from ‘thermodynamic’ formulae to independent values from structural-dynamics experiments.In a seminal paper, Ernst Donth proposed to assign a length scale to the AC-calorimetric relaxation time using the spatial resolution of quasielastic neutron scattering. The main problem is to find a range of relaxation times that is accessible by both methods. To achieve this, significant progress in the performance of NSE as well as AC calorimetry was required.A first experiment of this kind was realised on a glass-forming liquid, propylene glycol (PG). The result was that agreement with the thermodynamic calculations was better if temperature fluctuations were accounted for. Nevertheless, in PG the difference between the two thermodynamic estimates is small. Therefore, a material with a higher ‘contrast’ between the alternatives was used in a second experiment, poly(ethylmethacrylate) (PEMA). In addition, this experiment benefitted from the upgrade of J-NSE with superconducting coils. The new results show a clear agreement with the thermodynamic calculation involving temperature fluctuations.
001023109 536__ $$0G:(DE-HGF)POF4-623$$a623 - Data Management and Analysis (POF4-623)$$cPOF4-623$$fPOF IV$$x0
001023109 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001023109 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001023109 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x3
001023109 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001023109 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001023109 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x0
001023109 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x1
001023109 7001_ $$0P:(DE-HGF)0$$aChua, Yeong Zen$$b1
001023109 7001_ $$0P:(DE-HGF)0$$aSchmelzer, Jürn W. P.$$b2
001023109 7001_ $$0P:(DE-HGF)0$$aSchick, Christoph$$b3
001023109 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4$$ufzj
001023109 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b5$$ufzj
001023109 909CO $$ooai:juser.fz-juelich.de:1023109$$pVDB
001023109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b0$$kFZJ
001023109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
001023109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b5$$kFZJ
001023109 9131_ $$0G:(DE-HGF)POF4-623$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vData Management and Analysis$$x0
001023109 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001023109 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001023109 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
001023109 920__ $$lyes
001023109 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001023109 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
001023109 980__ $$aconf
001023109 980__ $$aVDB
001023109 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001023109 980__ $$aI:(DE-Juel1)IBI-8-20200312
001023109 980__ $$aUNRESTRICTED
001023109 981__ $$aI:(DE-Juel1)JCNS-1-20110106