001023116 001__ 1023116
001023116 005__ 20240619092102.0
001023116 037__ $$aFZJ-2024-01686
001023116 041__ $$aEnglish
001023116 1001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b0$$eCorresponding author$$ufzj
001023116 1112_ $$aQENS/WINS 2022$$cSan Sebastián$$d2022-05-23 - 2022-05-27$$wSpain
001023116 245__ $$aCooperativity Length in a Glass-Forming Liquid Determined by a Combination of Calorimetric Methods and Neutron Spin Echo Spectroscopy
001023116 260__ $$c2022
001023116 3367_ $$033$$2EndNote$$aConference Paper
001023116 3367_ $$2DataCite$$aOther
001023116 3367_ $$2BibTeX$$aINPROCEEDINGS
001023116 3367_ $$2DRIVER$$aconferenceObject
001023116 3367_ $$2ORCID$$aLECTURE_SPEECH
001023116 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1710762079_7294$$xInvited
001023116 520__ $$aAlthough the idea of a ‘characteristic’ or ‘cooperativity’ length scale ξ related to the glass transition is now wide-spread, there is much less consensus on whether this length scale can be related to thermodynamic fluctuations and, if yes, whether one has to consider temperature fluctuations δT. The crucial experiment to this end has to compare values of ξ from ‘thermodynamic’ formulae to independent values from structural-dynamics experiments.An experiment with the aim of determining the cooperativity length ξ in glass forming materials was proposed some time ago by Ernst Donth [1]. The basic idea of this experiment is to assign a length scale to the AC-calorimetric relaxation time using the spatial resolution of quasielastic neutron scattering. The main problem is to find a range of relaxation times that is accessible by both methods. From the very beginning it is clear that only neutron-spin echo (NSE) is suited for this task. This raises the additional problem that incoherent scattering has to be measured. Therefore, significant progress in the performance of NSE as well as AC calorimetry was required to conduct this experiment.A first experiment of this kind was realised on a glass-forming liquid, propylene glycol (PG) [2]. The result was that agreement with the thermodynamic calculations was better if temperature fluctuations were accounted for. Nevertheless, in PG the difference between the two thermodynamic estimates is small and the dynamics of the methyl groups overlaps with the α relaxation. Therefore, a material with a higher ‘contrast’ between the alternatives was of interest and used in a second experiment, poly(ethylmethacrylate) (PEMA). In addition, neutron backscattering experiments showed that the methyl group dynamics is better separated in PEMA. Finally, the experiment benefitted from the upgrade of J-NSE with superconducting coils. The new results show a clear agreement with the thermodynamic calculation involving temperature fluctuations.[1] E. Donth, Eur. Phys. J. E 12, 11 (2003).[2] Y. Z. Chua, R. Zorn, O. Holderer, J. W. P. Schmelzer, C. Schick, E. Donth, J. Chem. Phys. 146, 104501 (2017).
001023116 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001023116 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001023116 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001023116 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x3
001023116 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001023116 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001023116 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x0
001023116 7001_ $$0P:(DE-HGF)0$$aChua, Yeong Zen$$b1
001023116 7001_ $$0P:(DE-HGF)0$$aSchick, Christoph$$b2
001023116 7001_ $$0P:(DE-HGF)0$$aSchmelzer, Jürn W. P.$$b3
001023116 7001_ $$0P:(DE-HGF)0$$aHolderer, Olaf$$b4
001023116 909CO $$ooai:juser.fz-juelich.de:1023116$$pVDB
001023116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich$$b0$$kFZJ
001023116 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001023116 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001023116 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001023116 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x3
001023116 920__ $$lyes
001023116 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001023116 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
001023116 980__ $$aconf
001023116 980__ $$aVDB
001023116 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001023116 980__ $$aI:(DE-Juel1)IBI-8-20200312
001023116 980__ $$aUNRESTRICTED
001023116 981__ $$aI:(DE-Juel1)JCNS-1-20110106