Hauptseite > Publikationsdatenbank > Microscopic Dynamics of Structural Glasses Investigated by Quasielastic Neutron Scattering > print |
001 | 1023117 | ||
005 | 20240619092102.0 | ||
037 | _ | _ | |a FZJ-2024-01687 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Zorn, Reiner |0 P:(DE-Juel1)131067 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a The 15th International Conference on Muon Spin Rotation, Relaxation and Resonance |g μSR2020 |c Parma |d 2022-07-06 - 2022-07-10 |w Italy |
245 | _ | _ | |a Microscopic Dynamics of Structural Glasses Investigated by Quasielastic Neutron Scattering |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1710762095_7614 |2 PUB:(DE-HGF) |x Invited |
520 | _ | _ | |a In this presentation I will give a short introduction into quasielastic neutron scattering (QENS) and its application to glass-forming systems. QENS operates on time scales from picoseconds to a microsecond and at the same time has a spatial resolution in the Ångström range. Therefore, it is well suited for the study of molecular and polymeric glass-formers.The dynamics of glass-formers is still poorly understood, but certain universal features can be found which a theory has to explain. Foremost, there is the α relaxation, which governs what is usually called ‘glass transition’. Its temperature-dependence is highly non-Arrhenius and the shape of correlation functions non-exponential. In addition, faster relaxations may be present, among which the universal ‘fast β relaxation’ in the picosecond range is strongly related to the α relaxation in mode-coupling theory. As the fastest universal process, glasses show an excess of the vibrational density of states above the Debye model in the low frequency range, the so-called ‘boson peak’.All these phenomena can be observed by QENS with the additional information of a length scale. In addition, it is possible to study them in confined glass-formers in order to access their system-size-dependence. Selected QENS experiments will be presented and discussed. |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 2 |
650 | 2 | 7 | |a Soft Condensed Matter |0 V:(DE-MLZ)SciArea-210 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Basic research |0 V:(DE-MLZ)GC-2004-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e J-NSE: Neutron spin-echo spectrometer |f NL2ao |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)J-NSE-20140101 |5 EXP:(DE-MLZ)J-NSE-20140101 |6 EXP:(DE-MLZ)NL2ao-20140101 |x 0 |
856 | 4 | _ | |u https://www.musr2020.unipr.it |
909 | C | O | |o oai:juser.fz-juelich.de:1023117 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)131067 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 2 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k JCNS-1 |l Neutronenstreuung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-8-20200312 |k IBI-8 |l Neutronenstreuung und biologische Materie |x 1 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IBI-8-20200312 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|