001023458 001__ 1023458
001023458 005__ 20250204113806.0
001023458 0247_ $$2doi$$a10.1016/j.firesaf.2024.104116
001023458 0247_ $$2ISSN$$a0378-7761
001023458 0247_ $$2ISSN$$a0379-7112
001023458 0247_ $$2ISSN$$a1873-7226
001023458 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01697
001023458 0247_ $$2WOS$$aWOS:001187945700001
001023458 037__ $$aFZJ-2024-01697
001023458 082__ $$a690
001023458 1001_ $$0P:(DE-Juel1)190637$$aQuaresma, Tássia L. S.$$b0
001023458 245__ $$aSensitivity analysis for an effective transfer of estimated material properties from cone calorimeter to horizontal flame spread simulations
001023458 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001023458 3367_ $$2DRIVER$$aarticle
001023458 3367_ $$2DataCite$$aOutput Types/Journal article
001023458 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708349693_13891
001023458 3367_ $$2BibTeX$$aARTICLE
001023458 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023458 3367_ $$00$$2EndNote$$aJournal Article
001023458 520__ $$aPredictive flame spread models based on temperature dependent pyrolysis rates require numerous material properties as input parameters. These parameters are often derived by optimisation and inverse modelling using data from bench scale experiments such as the Cone Calorimeter. The estimated parameters are then transferred to flame spread simulations, where self-sustained propagation is expected. A fundamental requirement for this transfer is that the simulation model used in the optimisation is sufficiently sensitive to the input parameters that are important to flame spread. Otherwise, the estimated parameters will have an increased associated uncertainty that will be transferred to the flame spread simulation. This is investigated here using a variance-based global sensitivity analysis method, the Sobol indices. The sensitivities of a Cone Calorimeter and a horizontal flame spread simulation to 15 effective properties of polymethyl methacrylate (PMMA) are compared. Results show significant differences between the setups: the Cone Calorimeter is dominated by strong interaction effects between two temperature dependent specific heat values, whereas the flame spread is influenced by several parameters. Furthermore, the importance of some parameters for the Cone Calorimeter is found to be time-varying, suggesting that single-value cost functions may not be sufficient to account for all sensitive parameters during optimisation.
001023458 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001023458 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023458 7001_ $$0P:(DE-Juel1)174283$$aHehnen, Tristan$$b1
001023458 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b2$$eCorresponding author
001023458 773__ $$0PERI:(DE-600)1483569-1$$a10.1016/j.firesaf.2024.104116$$gVol. 144, p. 104116 -$$p104116 -$$tFire safety journal$$v144$$x0378-7761$$y2024
001023458 8564_ $$uhttps://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.pdf$$yOpenAccess
001023458 8564_ $$uhttps://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.gif?subformat=icon$$xicon$$yOpenAccess
001023458 8564_ $$uhttps://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023458 8564_ $$uhttps://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023458 8564_ $$uhttps://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023458 8767_ $$d2024-06-10$$eHybrid-OA$$jFlatrate
001023458 909CO $$ooai:juser.fz-juelich.de:1023458$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001023458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190637$$aForschungszentrum Jülich$$b0$$kFZJ
001023458 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b2$$kFZJ
001023458 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001023458 9141_ $$y2024
001023458 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023458 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001023458 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001023458 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001023458 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023458 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023458 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE SAFETY J : 2022$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001023458 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-06
001023458 920__ $$lyes
001023458 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001023458 9801_ $$aFullTexts
001023458 980__ $$ajournal
001023458 980__ $$aVDB
001023458 980__ $$aUNRESTRICTED
001023458 980__ $$aI:(DE-Juel1)IAS-7-20180321
001023458 980__ $$aAPC