001     1023458
005     20250204113806.0
024 7 _ |a 10.1016/j.firesaf.2024.104116
|2 doi
024 7 _ |a 0378-7761
|2 ISSN
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01697
|2 datacite_doi
024 7 _ |a WOS:001187945700001
|2 WOS
037 _ _ |a FZJ-2024-01697
082 _ _ |a 690
100 1 _ |a Quaresma, Tássia L. S.
|0 P:(DE-Juel1)190637
|b 0
245 _ _ |a Sensitivity analysis for an effective transfer of estimated material properties from cone calorimeter to horizontal flame spread simulations
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708349693_13891
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predictive flame spread models based on temperature dependent pyrolysis rates require numerous material properties as input parameters. These parameters are often derived by optimisation and inverse modelling using data from bench scale experiments such as the Cone Calorimeter. The estimated parameters are then transferred to flame spread simulations, where self-sustained propagation is expected. A fundamental requirement for this transfer is that the simulation model used in the optimisation is sufficiently sensitive to the input parameters that are important to flame spread. Otherwise, the estimated parameters will have an increased associated uncertainty that will be transferred to the flame spread simulation. This is investigated here using a variance-based global sensitivity analysis method, the Sobol indices. The sensitivities of a Cone Calorimeter and a horizontal flame spread simulation to 15 effective properties of polymethyl methacrylate (PMMA) are compared. Results show significant differences between the setups: the Cone Calorimeter is dominated by strong interaction effects between two temperature dependent specific heat values, whereas the flame spread is influenced by several parameters. Furthermore, the importance of some parameters for the Cone Calorimeter is found to be time-varying, suggesting that single-value cost functions may not be sufficient to account for all sensitive parameters during optimisation.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hehnen, Tristan
|0 P:(DE-Juel1)174283
|b 1
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.firesaf.2024.104116
|g Vol. 144, p. 104116 -
|0 PERI:(DE-600)1483569-1
|p 104116 -
|t Fire safety journal
|v 144
|y 2024
|x 0378-7761
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023458/files/1-s2.0-S0379711224000286-main-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023458
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21