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A B S T R A C T

Predictive flame spread models based on temperature dependent pyrolysis rates require numerous material
properties as input parameters. These parameters are often derived by optimisation and inverse modelling using
data from bench scale experiments such as the Cone Calorimeter. The estimated parameters are then transferred
to flame spread simulations, where self-sustained propagation is expected. A fundamental requirement for
this transfer is that the simulation model used in the optimisation is sufficiently sensitive to the input
parameters that are important to flame spread. Otherwise, the estimated parameters will have an increased
associated uncertainty that will be transferred to the flame spread simulation. This is investigated here using
a variance-based global sensitivity analysis method, the Sobol indices. The sensitivities of a Cone Calorimeter
and a horizontal flame spread simulation to 15 effective properties of polymethyl methacrylate (PMMA) are
compared. Results show significant differences between the setups: the Cone Calorimeter is dominated by
strong interaction effects between two temperature dependent specific heat values, whereas the flame spread
is influenced by several parameters. Furthermore, the importance of some parameters for the Cone Calorimeter
is found to be time-varying, suggesting that single-value cost functions may not be sufficient to account for
all sensitive parameters during optimisation.
1. Introduction

The development of fire simulation models that are capable of
predicting the behaviour of flame spread from material properties
is essential to overcome limitations of prescriptive design fires. By
accounting for the heat transfer inside the solid and the coupling
between the pyrolysis rates and the material temperatures, the heat
release rate (HRR) can be predicted, rather than prescribed. This way,
predictive models allow for the HRR to respond to changes in the
surrounding conditions, such as reduced oxygen concentrations or ac-
tivation of fire suppression systems. However, one major constraint in
the development of predictive models is the difficulty in experimentally
measuring all the required material properties, which are taken as
model input parameters. Especially in the high temperature ranges
where pyrolysis takes place, behaviours such as melting, bending, and
bubbling make the determination of physical parameters extremely
challenging under these conditions. During the burning of the sample,
intermediate materials may be formed, which are difficult to isolate and
analyse. Some of the phenomena, like bending or bubble formation can
also not be directly reproduced in commonly used simulation software,
such as the Fire Dynamics Simulator (FDS) [1].
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As an alternative strategy, optimisation algorithms have been ap-
plied to parameter estimation in a so-called inverse modelling process
(IMP) [2–12]. In the IMP, data from bench-scale experiments are used
as a target for determining the set of input parameters that lead to the
closest fit between the simulation output and the experimental data.
Typically, the HRR measured from Cone Calorimeter experiments is
taken as target, and the fitness is evaluated by a cost function. The
result is a set of effective material properties, whose performance is
subsequently validated in simulation setups of different scales, where a
self-sustained flame spread is expected to occur.

This approach assumes that the estimated parameters are transfer-
able across inherently different setups. Further, it is implied that the
sensitivities of the models to the input parameters are equivalent, both
in the bench-scale and in configurations involving flame spread. How-
ever, this assumption might not hold, particularly when the estimated
parameter set is to be validated in flame spread simulations of increased
scales. One possible reason is that the bench-scale experiments are
performed under conditions (e.g. small sample size, uniform heating)
where the flame spread is either negligible or simply does not occur.
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In addition, the bench scale experiments are difficult to be modelled
sufficiently well because of unknown boundary conditions, limitations
of existing sub-models, and difficulties in achieving high grid resolu-
tions due to the prohibitive computational cost. As a consequence, the
estimated parameter set becomes model-dependent, posing a challenge
to its transferability. Thus, it is not possible to affirm that an estimated
parameter set, that performs well in the Cone Calorimeter, will achieve
an equivalent satisfactory result when transferred to the flame spread
simulation [2,8]. It should be noted that while the focus of the current
study is limited to investigating the uncertainties introduced in flame
spread simulations by the estimated parameters, other sources of errors
in the model can also contribute to inaccurate results. These may
include errors related to the inadequate representation of physical
mechanisms or numerical errors.

In this context, we focus on answering the following question: how
sensitive is the Cone Calorimeter simulation setup to the parameters
that are important to the flame spread simulation? This is crucial
because parameters with low importance to the Cone Calorimeter
simulation will be estimated with an enlarged degree of uncertainty,
which is then carried over to the flame spread simulation. This happens
because their effect on the cost function used in the optimisation is
expected to be comparably low, leading the optimiser to freely choose
any value from the pre-defined sampling ranges. If such parameters,
on the other hand, are important to the flame spread simulation, their
uncertainty is propagated, potentially compromising the reliability of
the simulated results when compared to experimental data.

In this regard, we carry out sensitivity analyses (SAs) on two sim-
plified simulation setups: a Cone Calorimeter; and a horizontal flame
spread, to evaluate the models’ sensitivities to a set of 15 input pa-
rameters. The parameter set consists of effective material properties of
polymethyl methacrylate (PMMA), of its pyrolysis residue, and of an
insulation material. The parameter set investigated here is taken from a
previous study by Hehnen and Arnold [2]. In said study, the parameter
set is determined, using two independent inverse modelling steps. In
the first step, the pyrolysis reaction scheme is designed, for which the
kinetic parameters and heats of gasification are estimated. After its
successful completion, thermophysical parameters are determined in
the second step, using a simplified Cone Calorimeter simulation setup.
Since the pyrolysis reaction scheme is considered fixed at this point,
we focus here only on this second step. To ensure compatibility to the
previous study, the same Cone Calorimeter simulation setup is used
here. The flame spread setup represents as well a simplified horizontal
configuration, in which a self-sustained spread develops over a PMMA
sample in still air. To the author’s best knowledge, only a limited
number of studies have investigated the flame spread behaviour over
PMMA samples in such configuration, either experimentally [13,14] or
numerically [15]. For this reason, this configuration is specifically cho-
sen. All the simulations discussed in the present work were conducted
with a self-compiled version of FDS (version FDS6.7.6-810-ge59f90f-
HEAD) [1]. It is the same FDS version as was used in the previous
study [2], to ensure compatibility.

Past studies [6,7,12,16,17] have addressed the importance of run-
ning SAs in order to improve the efficiency of strategies for material
property estimation, which are based on multi-objective optimisation.
In general, the SA is aimed for model simplification, by determining
the relative importance of input parameters, such that the unimportant
ones can be filtered out from the optimisation, saving computing
time. More recently, Ding et al. [18] conducted one-at-a-time SAs on
large-scale upward flame spread simulations to identify which input
parameters affect the spread the most, so that their measurement/
estimation can be improved. However, literature lacks comprehensive
investigations into the importance of parameters across different sim-
ulation setups. Specifically, there is a shortage of research addressing
whether the influence of a fixed set of estimated parameters changes
when transitioning from the bench-scale simulation, with which they
2

were derived, to scenarios involving flame spread. Our study seeks to
fill this gap by not only identifying the most influential parameters, but
also examining how these parameters’ importance may vary from the
Cone Calorimeter to the horizontal flame spread setup.

The SAs performed in this contribution are mainly discussed in
terms of the Sobol indices [19,20], a robust global SA method based on
the decomposition of variances. By varying input parameters simulta-
neously and not one at a time, the method is capable of quantitatively
capturing interaction effects between input parameters on the model
output of interest. It is therefore suitable for determining the sensitiv-
ities of non-linear and high-dimensional models, such as the complex
pyrolysis models in question. Sensitivities are determined based on the
degree of contribution that a certain input parameter has to the uncer-
tainty (variance) of the model output. It has been applied in the field of
fire safety science to investigate the influence of inputs on environmen-
tal fire spread models [21], and on the mass loss rate (MLR) calculated
by the Arrhenius equation [17]. In this contribution, the Sobol indices
are estimated to express the effects of the input parameters on different
simulation outputs:

• the temporal development of the HRR, which is convenient to
assess how the influence of a certain input parameter varies
throughout the course of the simulation;

• the root mean square error (RMSE), calculated between the sim-
ulated HRRs and the measured HRR, commonly used as a cost
function in the IMP;

• and the rate of spread (ROS), calculated in an additional post-
processing step, based on the derivative of the flame front position
with respect to time.

In addition, the relation between the RMSE and the ROS and their
two respective most influential input parameters are qualitatively dis-
cussed on the basis of scatterplots, providing a visual representation of
their responses to changes in the inputs.

This article is accompanied by a publicly available data repository
on Zenodo [22], containing the simulation data, the Python scripts used
for data analysis, and supplementary material data.

2. Methods

2.1. Cone Calorimeter simulation

The simulation setup of a simplified Cone Calorimeter considered
as reference case in this work stems from freely available previous
studies [2]. The model was initially developed to be used in an IMP
for estimating thermophysical properties of PMMA, based on data of
Cone Calorimeter experiments of black cast PMMA. The simulations
were conducted with the same FDS version used in the scope of this
work for consistency. The experimental data was provided by the Aalto
University to the publicly available MaCFP database [23]. In the Cone
Calorimeter experiments, a square sample of PMMA with 10 cm edge
length and 6 mm thickness is exposed to a radiative heat flux of
65 kW/m2. The insulation material of equal surface area is positioned
below the PMMA sample for insulation, and is 2 cm thick.

Amongst the different Cone Calorimeter simulation models pre-
sented previously [2], we chose the one labelled as ‘‘Cone_04’’. Cone_04
uses an increased resolution when compared to similar approaches in
the field, in which Cone Calorimeter models were also employed to
estimate material properties. Viitanen et al. [3], Hehnen et al. [5],
McCoy et al. [24] and Beji and Merci [8] considered fluid cell sizes
of 5 cm or more, whereas in Cone_04, 3.33 cm fluid cells are defined,
see Fig. 1(a). The coarse fluid cell resolution of 3.33 cm is necessary,
due to the large amount of simulations conducted during the IMP [2].

In Cone_04, the radiative heat flux of 65 kW/m2 is assigned to
the sample surface, thus avoiding the need for modelling the heater.
Despite this simplification, the non-uniform heating of the sample

surface induced by the conical heating element is accounted for. This
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Fig. 1. Simulation setup of the simplified Cone Calorimeter, ‘‘Cone_04’’, used for estimating thermophysical parameters of black cast PMMA [2], taken as reference case.
is accomplished, by defining multiple surfaces with slightly different
values of heat fluxes, as presented in Fig. 1(b). In addition, the model
stood out for providing a set of thermophysical properties, which
lead to the best fit to the experimental HRR data in the IMP, see
Fig. 1(c). For those reasons, Cone_04 is expected to lead to an improved
representation of the sample heating and thermal decomposition, and
it is therefore taken here as reference case.

In the following subsections, we provide only a concise description
of the model that is relevant to the scope of this contribution. For
further details and additional resources, the reader should refer to the
original work [2] and to the FDS User’s Guide [1], both freely available.

2.1.1. Pyrolysis and solid phase
In this approach, it is assumed that PMMA pyrolysis can be de-

scribed by an elementary first-order reaction of the form:

PMMA (solid) ⟶ 0.99 FuelMixture (gas) + 0.01Residue (solid)

where the fuel mixture is composed by methane, ethylene and carbon
dioxide, and the residue is an inert solid product. The rates of py-
rolysis are dependent on the local temperatures of the solid, and are
calculated with the Arrhenius equation, as implemented in FDS [1].
As a strategy to achieve a better fit to the experimental data, it was
assumed that different fractions of the total PMMA mass decompose,
each, at a different rate, as described in [2]. The kinetic parameters
(pre-exponential factor, activation energy), heats of gasification, and
3

corresponding PMMA mass fractions were determined in the first IMP
step, taking data of Microscale Combustion Calorimetry (MCC) and
Thermogravimetric Analysis (TGA) as target [2]. In this same step, the
volume fractions of the fuel mixture components were also determined.
Once the first step is concluded successfully, the second IMP step
follows.

In this contribution, the focus lies on the second IMP step, in which
the kinetic parameters, heats of gasification, and mass fractions will
not be adjusted anymore. In this second step, thermophysical properties
of PMMA, of the insulation material, and of the pyrolysis residue are
determined, using the Cone Calorimeter. For PMMA, these properties
are: emissivity, absorption coefficient, refractive index, specific heat
and thermal conductivity. The thermal conductivity and the specific
heat of PMMA were both defined as temperature-dependent values,
following a piecewise linear function with reference points at 150 ◦C,
480 ◦C and 800 ◦C. This implies that values falling between the speci-
fied temperature points are determined through linear interpolation. In
FDS, material property values below or above the given temperature
range are assumed constant, equal to the first or last specified value
for the property. The temperature-dependent variation of the estimated
values of the thermal conductivity and the specific heat of PMMA is
depicted in Fig. 2. The experimental MCC data is presented in the plots
in a secondary 𝑦-axis to underscore the temperature range associated
with PMMA decomposition. Notably, in Fig. 2, it should be observed
that, although 800 ◦C surpasses the upper temperature limit indicated
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Fig. 2. Temperature dependence of the piecewise functions defined for the estimated conductivity and specific heat of PMMA. The experimental MCC data is included to highlight
the temperature range at which the material pyrolyses.
Table 1
Set of effective properties describing the solid phase materials. The parameters were
estimated in the work of Hehnen and Arnold [2] using the reference case Cone_04.

Material Parameter Estimated IMP value Unit

1 PMMA Emissivity 0.941 –
2 Absorption coefficient 7978.8 m−1

3 Refractive index 2.854 –
4 Conductivity at 150 ◦C 0.379 W m−1 K−1

5 Conductivity at 480 ◦C 0.024 W m−1 K−1

6 Conductivity at 800 ◦C 4.337 W m−1 K−1

7 Specific heat at 150 ◦C 0.774 kJ kg−1 K−1

8 Specific heat at 480 ◦C 3.808 kJ kg−1 K−1

9 Specific heat at 800 ◦C 7.275 kJ kg−1 K−1

10 Residue Emissivity 0.552 –
11 Conductivity 4.509 W m−1 K−1

12 Specific heat 5.893 kJ kg−1 K−1

13 Backing Emissivity 0.441 –
14 Conductivity 2.408 W m−1 K−1

15 Specific heat 4.067 kJ kg−1 K−1

by the MCC data (600 ◦C), the 800 ◦C point contributes to estimating
values within the 480 to 600 ◦C range. However, given that the MCC
data indicates nearly complete decomposition below 500 ◦C, it is
expected that the 800 ◦C point has minimal impact on the simulations,
if any. Conversely, as the MCC data shows that most of the PMMA
decomposes between 150 and 500 ◦C, values of material properties at
these temperatures are anticipated to have a more significant influence.

For the insulation material and the residue, the parameters are:
emissivity, thermal conductivity and specific heat. In total, the material
properties estimated in an IMP using the Cone Calorimeter count 15
input parameters. Their respective estimated values are presented in
Table 1.

The value of PMMA density was directly calculated from reported
mass and dimensions of the sample. Density of the residue was fixed
to an arbitrary value due to lack of information, and density of the
insulation material was taken from the MaCFP database [23].

The default one-dimensional heat conduction model in FDS was
used [1]. In this model, heat conduction is calculated only in the
direction normal to the sample surface. The solid phase solution is
updated at every time step and the node spacing of the PMMA layer
is set to uniform. For the layer of the insulation material, the default
stretched node spacing is considered.

The FDS default grid resolution in both layers is increased by a
factor of 10, by setting the CELL_SIZE_FACTOR (CSF) to 0.10. This
modification leads the PMMA layer to be discretised in 96 equally
spaced cells, and the layer of the insulation material in 11 stretched
cells. Nonetheless, the cell size of the PMMA layer is automatically
4

re-defined during the simulation, as the temperature-dependent param-
eters affect the thermal diffusivity, as well as changing layer thickness
due to sample consumption.

2.1.2. Combustion and gas phase
Combustion of the fuel mixture is assumed mixing-controlled and

the soot yield is set to 0.022 g/g [25]. The Large Eddy Simulation
(LES) is chosen as simulation mode. All default settings related to the
models that accompany LES in FDS are kept unchanged. This means
that sub-grid scales are modelled using the Deardorff model for the
eddy viscosity, and the wall-adapting local eddy-viscosity (WALE) is
used as near-wall turbulence model. The LES default radiation model
considers the grey gas assumption and the flame to be optically thick.
A specified radiative fraction controls the portion of the total heat that
is released as thermal radiation, and it is set to 0.35 for the defined
fuel mixture. The used radiative fraction is the default value in FDS for
unspecified species. The initial ambient temperature is set to 30.85 ◦C,
consistent with what was reported from the experiment.

An overview of the geometry, domain and mesh resolution can
be seen in Fig. 1(a). The computational domain extends in the 𝑥-
and 𝑦-directions from −15.0 cm to 15.0 cm, and in the 𝑧-direction
from −6.6 cm to 60.0 cm. A uniform grid is defined by assigning
9 x 9 x 20 cells respectively in the 𝑥-, 𝑦-, 𝑧-directions, resulting in cells
of 3.33 cm edge length. A single mesh is used for the whole domain,
whose boundaries are set to open conditions. The centre of the sample
is positioned at the origin (0,0,0). The sample holder is considered an
inert obstruction of 10 cm edge length in the 𝑥- and 𝑦-directions and
3.33 cm in the 𝑧-direction.

In order to evaluate grid independence, three additional simulation
cases are built from the reference case Cone_04, each considering a
different fluid cell size. The fluid cell sizes were determined based
on the feasibility of implementing the resolutions in a model suitable
for optimisation, in terms of computing times [2]. The goal of this
analysis is to verify whether the sensitivities to the input parameters are
maintained across different resolutions that could be used in the context
of an IMP. Following the terminology proposed earlier [2], Cone_04 is
here labelled as ‘‘C3’’, as a reference to the 3 × 3 number of divisions
of the sample surface, see Figs. 1(a) and 1(b). Thus, the first case is
called ‘‘C2’’ (2 × 2 divisions), referring to 5 cm cells, the second case is
called ‘‘C5’’ (5 × 5 divisions), with 2 cm cells in the fluid phase, and the
third is ‘‘C7’’ (7 × 7 divisions) with 1.43 cm cells. The heat flux mapping
applied to the surface of the sample is adjusted in each case to conform
with the C2, C5 and C7 resolutions. It is important to note, that the C5
and C7 cases represent a level of refinement that would introduce great
computational effort in an IMP. For this reason, resolutions above C7
are not explored here.
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Fig. 3. Effect of different fluid phase resolutions on the simulated HRR of the reference
case Cone_04.

From Fig. 3, it is possible to observe that the simulated HRR does
not significantly change with grid refinement in the fluid phase. The
overall shape of the curve is maintained, and the main impact is on the
region of the HRR peak, which is only slightly decreased and shifted to
the left, as the fluid phase resolution increases. It is therefore expected,
that the relative importance of the input parameters to the simulated
HRR is conserved across the tested fluid cell sizes.

2.2. Horizontal flame spread simulation

The flame spread simulation considered in the SA represents a
simplified horizontal configuration, in which a self-sustained spread
develops over a slab of PMMA. No influence of ventilation or wind
conditions is considered, such that the flame is not disturbed by any
external changes in the flow field.

The solid phase modelling used in the flame spread simulation
is transferred from the reference case of the Cone Calorimeter sim-
ulation. This means that the PMMA sample, pyrolysis, the insulation
material, and the solid phase resolution are the same as described in
Section 2.1.1. This is important since the main goal of this contribution
is to compare the responses of both simulations to variations in the
same set of material properties presented in Table 1.

In the flame spread setup, the PMMA sample is positioned on top
of an inert ochre obstruction which serves as a sample holder, see
Figs. 4(a) and 4(b). The sample dimensions are 23 cm x 9.5 cm x 0.6 cm,
and an external heat flux of 65 kW/m2 is prescribed for 100 s to an area
of 2.5 cm x 9.5 cm to start ignition. The ignition area is located at the
left end of the sample, and it is represented by the dark brown patch
in Figs. 4(a) and 4(b).

The dimensions of the computational domain are 26 cm x 12.5 cm x
11 cm, and it is divided in 26 meshes of 2.0 cm x 12.5 cm x 5.5 cm
each, to allow parallel computation. The fluid cell size used in the flame
spread simulation is set to 0.5 cm. The fluid phase modelling differs
from the Cone Calorimeter setup only by the cell size. The simulation
mode, combustion and radiation modelling are given also according to
what was used in the Cone Calorimeter, as described in Section 2.1.2.
An overview of the horizontal flame spread setup is presented in Fig. 4.

Given its dimensions, the horizontal flame spread simulation can
be seen as a simplified small-scale setup of the same scale as the
Cone Calorimeter simulation. In addition, the heat flux applied to the
dark brown patch is intentionally set to the value used in the Cone
Calorimeter, 65 kW/m2. Such similarities allow for the flame in the
flame spread simulation to transition from the ignition stage, where
the sample heating is modelled according to the Cone Calorimeter, to
a self-sustained stage of spread.

In order to build a reference case also for the flame spread simu-
lation, the set of material properties used in Cone_04 was transferred
5

to the horizontal flame spread setup. The fluid cell size was set to
0.5 cm because it was the maximum size to allow a self-sustained
spread to occur over the sample. Several other attempts with reasonably
larger fluid cell sizes (3 cm, 2 cm, 1 cm) were carried out for even
larger samples, but the flame would not spread much farther than
the ignition zone, extinguishing shortly after the end of the applied
external heat flux. Testing an increased grid resolution with 0.25 cm
cells revealed higher HRR and rate of spread compared to the 0.5 cm
case, indicating that no grid independence was achieved. The grid
dependence in flame spread simulations based on material pyrolysis
appears to be a current limitation of FDS. This limitation has been
attributed to the implemented empirical boundary layer correlations.
However, it is important to highlight that in FDS there are a number
of other (sub)model parameters that influence the spread, for example,
parameters related to the radiation model. Determining the sensitivity
of these other parameters, however, falls outside the scope of the
present work, which is focused on the estimated material properties.

Fig. 5 shows slices containing data of the HRR per unit volume
(HRRPUV) taken at the central plane of the domain (𝑦 = 0) along
the 𝑥-axis, and at different points in time. The patches coloured in
magenta in the slices show the location of the flame front, which is here
defined as the cell containing the maximum value of HRRPUV in the
one-dimensional row of fluid cells touching the surface of the sample.
The HRRPUV slices shown in Fig. 5 were generated using the fdsreader
version 1.9.9, an open source Python module developed to read FDS
output data [26].

2.2.1. Rate of spread (ROS)
In this section, a methodology is introduced to determine the ROS,

since it is not a direct output of the simulation software, and requires
an additional post-processing step. The ROS is an important quantity
to represent the flame spread phenomenon in the context of fire safety,
because it describes how fast a fire can develop in a compartment,
impacting the degree of damage and the time to reach flashover. For
this reason, the ROS is taken as output of interest in the SA, such
that the influence of the material properties can not only be evaluated
on the temporal development of the simulated HRR, but also on a
single value representing the whole phenomenon. Furthermore, the
ROS could be used for validation or as target in future IMPs that
aim at estimating input parameters from flame spread experiments in
bench-scale dimensions.

The ROS is determined by the rate at which the position of the flame
front changes with respect to time. At every time step, the maximum
HRRPUV is tracked in the fluid cells ahead of the last recorded flame
front position, in order to distinguish between leading and trailing
edges of the flame. This is done in order to prevent a maximum
HRRPUV located in the back of the flame from being mistakenly
accounted as the front. In the post-processing, the values of HRRPUV
can be read either from slice files, as shown in Fig. 5, or from multiple
devices that are positioned along the centre line of the sample, as
indicated by the green dots in Figs. 4 and 6(a).

The recorded positions can then be plotted against time, as demon-
strated in Fig. 6(b) for the reference case. The small plateaus in the
black curve correspond to the periods when the position of the flame
front does not change. The vertical blue dashed line at 100 seconds
indicates the time instant at which the applied external heat flux over
the ignition area ceases. Three zones of spread are identified, as shown
in Figs. 6(a) and 6(b): (1) ignition zone; (2) self-sustained spread; and
(3) extinction zone, influenced by the end of the sample. A linear
relation between position and time is fitted to the region where a steady
self-sustained spread develops without the influence of the ignition and
extinction zones. Finally, the ROS is taken as the slope of the red linear
curve in Fig. 6(b). In this case, the ROS calculated with the presented
method resulted in 0.13 mm/s, which is a value of the same order of
magnitude (0.10 mm/s) as those obtained from horizontal flame spread
experiments over cast PMMA samples of similar thickness and under
the same ventilation conditions, as reported elsewhere [13].
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Fig. 4. Overview of the horizontal flame spread simulation setup used in the SA, showing the fluid phase resolution, meshes and dimensions. Bold lines indicate mesh borders.
Fig. 5. Slices at 𝑦 = 0 showing the HRRPUV of the reference case of flame spread simulation, at different points in time. The set of material properties used in the solid phase
modelling was transferred from Cone_04. The fluid cells coloured in magenta indicate the position of the flame front.
2.3. Sensitivity analysis (SA)

The SAs conducted in this study follow the methodology of the
Sobol sensitivity indices, a global SA method based on the decompo-
sition of variances [19]. Unlike local SA methods, which vary input
variables one at a time, the Sobol indices can efficiently explore multi-
dimensional parameter spaces, accounting for the effects of all possible
combinations of input parameters. Such feature makes it well-suited
for quantifying sensitivities of non-linear models, which cannot be
adequately assessed by one-at-a-time methods [27].
6

2.3.1. Mathematical formulation
In the mathematical formulation of the method proposed by Sobol

[19], the model can be described as a multivariable function 𝑌 = 𝑓 (𝐗),
where 𝑌 is a scalar output and 𝐗 = (𝑋1, 𝑋2,… , 𝑋𝑘) is a point in a 𝑘-
dimensional parameter space. If 𝑓 satisfies the according requirements,
it can be decomposed into terms of increasing dimensions:

𝑓 = 𝑓0 +
∑

𝑖
𝑓𝑖(𝑋𝑖) +

∑

𝑖

∑

𝑗>𝑖
𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) +⋯ + 𝑓12 … 𝑘. (1)

Each individual term is a function only of the inputs in its index, that
is, 𝑓 corresponds to the constant part of the function, 𝑓 = 𝑓 (𝑋 )
0 𝑖 𝑖 𝑖
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Fig. 6. Determining the rate of spread (ROS) for the reference case of the horizontal flame spread simulation.
depends only on one component (here 𝑋𝑖) of the parameter vector
𝐗, 𝑓𝑖𝑗 = 𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) depends on two components and so on. The total
number of terms is equal to 2𝑘, out of each 𝑘 terms are called first-order
function 𝑓𝑖, 𝑓𝑖𝑗 are second-order functions, and so forth. Eq. (1) can be
squared and integrated to generate the decomposition of variances:

𝑉 (𝑌 ) =
∑

𝑖
𝑉𝑖(𝑋𝑖) +

∑

𝑖

∑

𝑗>𝑖
𝑉𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) +⋯ + 𝑉12…𝑘 (2)

where the total variance of the output 𝑉 (𝑌 ) is split down into 2𝑘 − 1
different partial variances, each accounting for fractions of the output
variance that is induced by the corresponding input, or combinations of
inputs. For example, 𝑉𝑖(𝑋𝑖) is the induced variance on the output when
𝑋𝑖 is varied alone, while 𝑉𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) is the induced variance when 𝑋𝑖
and 𝑋𝑗 are varied together. Two parameters are said to interact when
their combined effect on the output is different from the sum of their
single effects.

The Sobol indices are obtained by dividing each partial variance
in Eq. (2) by the total variance of the output 𝑉 (𝑌 ), giving:
∑

𝑖
𝑆𝑖 +

∑

𝑖

∑

𝑗>𝑖
𝑆𝑖𝑗 +⋯ + 𝑆123…𝑘 = 1 (3)

where the indices 𝑆𝑖, 𝑆𝑖𝑗 , etc, are ratios varying from 0 to 1. Following
a similar terminology used for the decomposition in Eq. (1), different
types of sensitivity indices are defined:

• 𝑆𝑖: first-order indices, provide a measure of main effects, i.e. the
fractional contribution of 𝑋𝑖 to the total variance of 𝑌 ;

• 𝑆𝑖𝑗..𝑘: higher-order indices, measure interaction effects between
the inputs indicated in their subscripts;

• 𝑆𝑇𝑖: total-order indices, account for all the effects due to varia-
tions in 𝑋𝑖, i.e. first-order effects and interaction effects.

The indices provide a measure of importance of each input parameter
by quantifying how much the variance of the output could be reduced
if a given input parameter, or combination of parameters, could be
fixed. For example, 𝑆𝑖 = 0.10 means that 10% of the variance of the
output could be reduced if 𝑋𝑖 is fixed to a known value. Similarly,
𝑆𝑇𝑖 = 0 implies that 𝑋𝑖 is non-influential and can be fixed anywhere
in its distribution without affecting the variance of the output [28].
When interaction effects exist, the sum of all total-order effect indices
is greater than unity.

As the number of sensitivity indices to be computed in Eq. (3)
increases exponentially with the number of input parameters, the cal-
culation of high-order indices can become expensive. It is therefore
convenient and often sufficient to express sensitivities in terms of first-
order and total-order sensitivity indices. The difference between 𝑆𝑇
7

𝑖

and 𝑆𝑖 provide a measure of how much 𝑋𝑖 is involved in interactions
with any other input parameter.

For a better understanding, an example is given for a function of
the form 𝑌 = 𝑓 (𝐗) with 𝐗 = (A,B,C), for which Eq. (3) becomes:

𝑆A + 𝑆B + 𝑆C + 𝑆AB + 𝑆AC + 𝑆BC + 𝑆ABC = 1 (4)

where 𝑆A, 𝑆B, and 𝑆C are the first-order indices, accounting for the
main effects of A, B, and C respectively. The second-order indices 𝑆AB,
𝑆AC and 𝑆BC account for the interaction effects between the pairs of
inputs in their subscripts. Accordingly, 𝑆ABC is the third-order index
which accounts for the interaction effects on the output when A, B and
C are varied together. In this example, the total-order indices of inputs
A, B and C are given as:

𝑆𝑇A = 𝑆A + 𝑆AB + 𝑆AC + 𝑆ABC (5)

𝑆𝑇B = 𝑆B + 𝑆AB + 𝑆BC + 𝑆ABC (6)

𝑆𝑇C = 𝑆C + 𝑆AC + 𝑆BC + 𝑆ABC (7)

in which the total effect of 𝑆𝑇𝑖 is the sum of all the terms in Eq. (3)
where the parameter 𝑋𝑖 is considered.

In this study, the sensitivities of the simulation setups to the set of
15 input parameters will be evaluated only in terms of first-order (S1)
and total-order indices (ST).

2.3.2. Estimating the Sobol indices
For analytical models, the integrals related to the calculation of

variances can be solved also analytically. However, this is not the
case for the simulation models investigated in this work. The approach
used here for estimating the indices assumes that the simulation model
is a ‘‘black box’’, and no information on model behaviour is known
other than what is perceived through variations in the model’s inputs
and outputs. The partial variances are calculated by quasi-Monte Carlo
estimates and therefore a large number of simulations needs to be
conducted, one for each sample of model inputs [20].

Input parameters are assumed to be independent and uniformly
distributed within their sampling limits, and samples are generated
by employing the Saltelli’s sampling scheme [20], which is based on
the Sobol sequence. The Sobol sequence is a type of low-discrepancy
quasi-random sequence that creates an efficient space filling sampling
of the high dimensional parameter space. The SAs, including sampling,
estimation of the indices and confidence intervals, are carried out
within the SALib Python library (version 1.4.5) [29,30]. The confidence
intervals for the sensitivity indices, are calculated using the bootstrap
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Table 2
Sampling limits and units of the input parameters considered in the SAs.

Material Parameter Sampling limits Unit

1 PMMA Emissivity [0.799 ; 0.999] –
2 Absorption coefficient [6781.9 ; 9175.5] m−1

3 Refractive index [2.426 ; 3.281] –
4 Conductivity at 150 ◦C [0.322 ; 0.436] W m−1 K−1

5 Conductivity at 480 ◦C [0.021 ; 0.028] W m−1 K−1

6 Conductivity at 800 ◦C [3.687 ; 4.988] W m−1 K−1

7 Specific heat at 150 ◦C [0.658 ; 0.890] kJ kg−1 K−1

8 Specific heat at 480 ◦C [3.237 ; 4.380] kJ kg−1 K−1

9 Specific heat at 800 ◦C [6.183 ; 8.366] kJ kg−1 K−1

10 Residue Emissivity [0.469 ; 0.635] –
11 Conductivity [3.833 ; 5.186] W m−1 K−1

12 Specific heat [5.009 ; 6.777] kJ kg−1 K−1

13 Backing Emissivity [0.375 ; 0.507] –
14 Conductivity [2.047 ; 2.769] W m−1 K−1

15 Specific heat [3.457 ; 4.677] kJ kg−1 K−1

resampling technique. This method involves generating multiple resam-
pled datasets by randomly selecting and replacing data points from the
original dataset. Sensitivity indices are then computed for each resam-
pled dataset, creating a distribution of indices. The standard deviation
of these resampled sensitivity indices is calculated, and confidence
intervals are established based on a confidence level of 95%. These
intervals provide an estimate of the uncertainty associated with the
sensitivity indices, indicating the range within which the true values
are likely to lie.

The sampling limits of the 15 input parameters were defined by
taking 15% of variation around the best parameter set determined in
the IMP. A restriction is imposed only for the upper limit of emissivity,
such that it would not exceed the value of 0.999. The sampling limits
and units of each input parameter are shown in Table 2. In order to
achieve better uniformity, the sampling scheme requires the number
of samples N to be generated as powers of 2, i.e. N = 2𝑞 , particu-
larly when sampling high-dimensional parameter spaces. For the Cone
Calorimeter, 𝑞 = 17, and for the flame spread simulation, 𝑞 = 15.
Fewer samples are considered for the flame spread simulation due to
the significantly enlarged computing time in comparison to the Cone
Calorimeter simulation.

The influence of the 15 input parameters on two types of outputs
are evaluated, namely ‘‘multiple-value’’ or ‘‘single-value’’ outputs. The
simulated HRR is a time-series, therefore it is a multiple-value output.
In this case, the sensitivity indices are calculated at every point in time,
and, consequently, are presented also as time-series. This is convenient
to evaluate how the influence of a given input parameter varies over
the course of the simulation.

With respect to the single-value outputs, two indirect quantities
are calculated from the simulated HRRs: the root mean square error
(RMSE) for the Cone Calorimeter; and the ROS for the flame spread
simulation, see Section 2.2.1. It is important to evaluate the effect of
the input parameters on the RMSE because it is typically taken as the
cost function in the optimisation [31]. Here, the RMSE is calculated as:

RMSE =

√

√

√

√
1
N

N
∑

𝑖=1

(

simulated_HRR𝑖 − measured_HRR𝑖
)2 (8)

here N is equal to the number of points of the HRR curve, and
he measured_HRR is the experimental HRR curve shown in Fig. 1(c),
hich was used as target in the IMP in earlier work [2]. Table 3 shows

or each setup the number of simulations, the output of interest taken
n the SAs, their type, and how the Sobol indices are presented.

The 131,072 Cone Calorimeter simulations consumed about 1.6 ⋅104
ore-hours, whereas the 32,768 flame spread simulations demanded
ubstantial 1.2 ⋅ 107 core-hours in total. These numbers were estimated
onsidering that each individual simulation took as much time as the
lapsed wall clock time of their respective reference simulation case:
8

Table 3
Summary of the different simulation outputs considered in the SAs based on the Sobol
indices.

Simulation
setup

Number of
simulations

Output of
interest

Type of
output

Sobol
indices

Cone Calorimeter 131,072 HRR multiple-value time-series
RMSE single-value bar plots

Flame spread 32,768 HRR multiple-value time-series
ROS single-value bar plots

7.2 minutes for the Cone Calorimeter simulation; and 14.1 h for the
flame spread simulation. All simulations were executed on a high
performance computing cluster comprising 268 worker nodes with a
total of 17,152 cores. Each worker node features 2 AMD EPYC 7452
32-Core processors, each operating at a base clock speed of 2.350 GHz,
and is equipped with 256 GB of memory, corresponding to 4 GB per
core.

The Sobol indices lead to a straightforward and concise way of
ranking the input parameters according to their importance, by provid-
ing a quantitative measure of sensitivities. This is advantageous when
dealing with multi-dimensional parameter spaces. Yet, the indices do
not provide the type of relation (i.e. linear, non-linear) between model
output and the individual inputs, which is also a meaningful aspect of
the analysis. This gap is filled by a complementary qualitative analysis
with scatterplots. The scatterplots aim at showing the relation between
the output and the two most influential parameters that have been
previously identified by the indices. Only single-value outputs (RMSE
and ROS) are contemplated in the analysis with scatterplots.

3. Results and discussion

3.1. Effects on the HRRs

The effects of the 15 input parameters on the HRRs of the Cone
Calorimeter and the flame spread simulations are discussed in terms of
the time-series of the ST and S1 indices, expressing respectively the
total-order and the main effects of each parameter. The ST and S1
indices calculated over the simulated HRR of the Cone Calorimeter
simulation are shown in Figs. 7(a) and 8(a). Figs. 7(b) and 8(b) show
the ST and S1 indices with respect to the HRR of the flame spread
simulation up to the initial 300 seconds, and Figs. 7(c) and 8(c) show
the indices up to 2000 seconds.

In Figs. 7 and 8, confidence intervals are expressed by the shaded
areas around the curves, indicating the uncertainty in the estimation
of the indices. The uncertainty in the confidence intervals arises from
the inherent variability in the sampled data and the statistical methods
employed, reflecting the precision of the Sobol index estimates. Wider
intervals indicate greater uncertainty due to limited sample size, while
narrower intervals, as observed in the Cone Calorimeter case, result
from a larger number of samples, enhancing the reliability of the
estimates through the quasi-Monte Carlo approach.

Regarding the Cone Calorimeter simulation setup, the SA was con-
ducted for the C2, C3 and C5 cases of fluid cell sizes shown in Fig. 3. As
expected, the obtained sensitivity indices were very similar, showing
that the HRR response to the input parameters is maintained across
the evaluated fluid grid resolutions. The C7 case was left out due
to the enlarged computing time that would have been necessary to
run the simulations. Nonetheless, due to the similarity in the HRR
shapes presented Fig. 3, it is assumed that the sensitivities to input
parameters would be also similar for the C7 case. In light of the
similarity and for the sake of brevity, only the SA results with respect to
the reference case (C3) of the Cone Calorimeter will be presented here.
The remaining results can be found in the supplementary material data
available online [22].

As can be seen in Fig. 7(a), within the initial 5 seconds of the

Cone Calorimeter simulation, only three parameters have non-zero
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ST indices: PMMA emissivity, conductivity at 150 ◦C and specific heat
at 150 ◦C. This means that these are effectively the only parameters
affecting the HRR up to this point in time, whereas all the other
parameters remain unimportant. At about 10 seconds, the importance
of the specific heat at 150 ◦C momentarily drops, while the influence
f the same property at 480 ◦C increases. This is explained by the
ependency of the specific heat on temperature, established by the
iecewise linear function. As the sample heats up, higher temperatures
re reached, causing the value of the property to change, and conse-
uently its influence over the HRR. Soon after that, at about 25 seconds,
he importance of the specific heat at 150 ◦C increases again, and
t becomes, together with the specific heat at 480 ◦C, the two most
mportant parameters to affect the HRR of the Cone Calorimeter. At
he same time, the initial total-order effects of PMMA emissivity and
onductivity decrease to a practically negligible value for the rest of
he simulation time.

It is important to distinguish, however, two stages of influence
f the values of specific heat on the HRR, which become evident
hen Figs. 7(a) and 8(a) are compared. The stages are defined by the
ifference between their respective ST (Fig. 7(a)) and S1 (Fig. 8(a))
ndices, indicating the degree of interaction effects between the two
arameters. In the first stage, ranging from about 25 to 120 seconds,
he difference between ST and S1 is small, indicating therefore that the
nteraction effects are also small. This implies that the HRR is affected
redominantly by main effects of the two parameters, expressing that
he effects of changing them individually is dominant to the HRR at this
tage. In the second stage, from 120 to 150 seconds, an approximately
ynchronised and significant increase of the ST indices is observed.
t the same time, their corresponding S1 indices decline in a similar

rend, as presented in Fig. 8(a). The large discrepancy between ST
nd S1, together with the fact that all the other parameters have ST
ndices close to zero, indicate that strong interaction effects between
he values of specific heat at 150 ◦C and at 480 ◦C dominate the HRR
rom this point forward in the Cone Calorimeter simulation. Still, at
round 125 seconds, a timid increase in the ST indices of the PMMA and
he residue emissivities are almost solely related to interaction effects,
iven that their correspondent S1 indices are very close to zero.

By comparing Figs. 7(b) and 8(b) to Figs. 7(a) and 8(a), a very
imilar ranking of effects can be identified between the initial 100 sec-
nds of the flame spread simulation, and the initial 125 seconds of
he Cone Calorimeter simulation. In the flame spread setup, the initial
00 seconds corresponds to the heating of the dark brown part of
he sample by the prescribed external heat flux to start ignition (see
ection 2.2). Given that this approach is the same as the one used in
he Cone Calorimeter for heating up the whole sample, the similarity
n modelling for using the EXTERNAL_FLUX function in FDS is clearly
aptured by the sensitivity indices.

The vertical blue dashed line at 100 seconds in Figs. 7(b), 7(c),
(b) and 8(c) marks the end of the external heat flux and thus the
ransition from the ignition phase to the phase where the spread is self-
ustained. The transition from one phase to another is highlighted by
n abrupt change in the importance of some parameters. The ignition
atch receives a large heat flux, consisting of the prescribed external
lux of 65 kW/m2 and the heat feedback of the flame. This heat flux is
arger than that during the steady-state throughout the self-sustained
pread. Once the external flux is shut off, the initial flame shrinks
apidly. The flame takes some time to recover and grow to the size
f the steady-state. This is reflected in the increased effect of the
pecific heat of PMMA at 150 ◦C between 100 and 270 s. However,
fter approximately 270 s of simulation, their roles reverse, and the
pecific heat at 480 ◦C becomes more influential than that at 150 ◦C
or the remaining simulation time. As more of the material heats up
nd its temperature increases, the specific heat at 480 ◦C prevails,
s presented in Fig. 7(c). In addition, it can be seen that despite
scillations, after the initial 300 seconds, the specific heat values along

◦

9

ith emissivity, conductivity at 150 C of PMMA, and the specific heat 1
f the insulation material remain as the most influential parameters
ffecting the HRR. Another important observation concerns the least
mportant parameters, whose effects on the HRR, although smaller,
re not insignificant. The only exception is the refractive index, whose
ndices turned out to be zero in both simulation setups.

Figs. 7(b), 7(c), 8(b) and 8(c) also show that the specific heat of
he insulation material transitions from having no relevance during
he ignition phase to becoming one of the most influential parameters
ffecting the spread. This discrepancy is potentially related to the
mount of heat flux heating up the material in the two different stages.
hroughout ignition, the sample receives substantial 65 kW/m2 plus
he heat feedback from the flame. Under the influence of a higher
eat flux, thermal equilibrium is reached more quickly. The rapid
eating minimises the time period during which the insulation layer
an impact the temperature distribution within the sample, which, in
urn, impacts pyrolysis and the HRR. In contrast, during the spread
hase, the total heat flux is considerably lower, and the overall system
s less dominated by the intensity of the heat input. Therefore, changes
n the specific heat of the insulation material, which directly affect its
bility to store thermal energy, can have a comparatively larger impact
n the temperature distribution of the sample.

The existence of a transition in parameter importance, defined by
he end of the ignition phase and the start of a self-sustained spread,
ighlights the differences between the Cone Calorimeter and the flame
pread heating conditions. That is because both in the ignition phase
f the flame spread simulation, and in the Cone Calorimeter setup, the
ample is subject to a considerably higher heat flux than that of the self-
ustained spread. As previously discussed, the elevated heat flux tends
o dominate the thermal behaviour of the system, effectively masking
he effects of changes in parameters that are crucial to the spread, such
s the specific heat of the insulation material. Consequently, given the
one Calorimeter insensitivity to changes in this parameter, attempting

ts estimation through an IMP based on the Cone Calorimeter would
nvolve a high level of uncertainty. This implies that not all parameters
hat are important to the flame spread can be well estimated with IMPs
ased solely on the Cone Calorimeter setup.

.2. Effects on the RMSE and ROS

The effects of the 15 input parameters on the RMSE and on the ROS
re presented respectively in Figs. 9(a) and 9(b). Since both are single-
alue outputs, sensitivities are described by a single set of indices for
ach case. Confidence intervals are presented by error bars. For indices
ery close to one, such as the ST of specific heat at 480 ◦C in Fig. 9(a),
onfidence intervals can indicate that possible values for the associated
ensitivity index exceed unity. In general, increased sample sizes ensure
arrower confidence intervals and indices that fall within the expected
ange of 0 to 1. Nonetheless, the presented results were considered
atisfactory for the objectives of this work. This consideration was
upported by a preliminary analysis of the effect of the sample size
n the indices estimation for the Cone Calorimeter case, encompassing
192, 16384, 32768, 65536, and 131,072 samples. The results can
e found on the supplementary material data [22]. Moreover, some
1 indices present negative values, which are due to numerical artefacts
n the estimates. This issue has been reported before as a common
haracteristic of Saltelli’s method that is often associated with the value
f the index being close to zero.

As can be seen from Fig. 9(a), the specific heat at 150 ◦C and at
80 ◦C are effectively the only two input parameters that significantly
ffect the RMSE (calculated between simulated HRR curves of the
one Calorimeter and experiment, see Section 2.3.2). Moreover, the

nfluence is characterised by strong interaction effects, due to the
egligible S1 and dominant ST values. This means that the effect on
he RMSE highly depends on how the values of these two parameters
re combined. Indeed, the combination between the specific heat at

◦ ◦
50 C and at 480 C defines the slope of the linear curve that relates
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Fig. 7. Time-series of ST indices, indicating total-order effects on the HRRs. The vertical blue dashed line in plots (b) and (c) highlight the end of the external heat flux at
100 seconds in the flame spread simulation.
the two values in the piecewise linear function, see Fig. 2(b). The
slope is in turn related to how fast the change in the specific heat will
occur as a function of temperature. For example, if the specific heat
10
changes from a low value to a high value abruptly, suddenly more
energy is required to cause the temperature of the material to change.
In this case, this would reduce the local rates of pyrolysis, slowing down
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Fig. 8. Time-series of S1 indices, indicating main effects on the HRRs. The vertical blue dashed line in plots (b) and (c) highlight the end of the external heat flux at 100 seconds
in the flame spread simulation.



Fire Safety Journal 144 (2024) 104116T.L.S. Quaresma et al.
Fig. 9. Sobol sensitivity indices indicating the effects of the 15 input parameters on the single-value outputs of the two simulations setups.
Fig. 10. Visualisation of the interaction effects between the time-dependent values of specific heat on the HRR curves of the Cone Calorimeter simulation.
the production of combustible gases which then burn, releasing heat.
Ultimately, this translates into flattened HRR curves. This change in the
HRR shape determines how much each simulated curve deviates from
the experimental HRR curve. This effect is then captured by the RMSE.

A complementary approach to visualise these strong interaction
effects is presented in Fig. 10. The plots show all 131,072 simulated
HRR curves from the Cone Calorimeter, with colours representing their
respective sample values of specific heat at 150 ◦C in Fig. 10(a), and
specific heat at 480 ◦C in Fig. 10(b). The samples of these parameters
are used to create colour maps, which are then assigned to the HRR
curves. This provides a visual representation of the specific heat values
used in each simulation. The colour map illustrates how the shape
of the HRR is influenced by combinations of values of these two
crucial parameters. For example, it becomes evident that flattened HRR
curves, which also burn for longer times, result from a combination
of low values of specific heat at 150 ◦C (dark blue in Fig. 10(a)),
and high values of specific heat at 480 ◦C (yellow in Fig. 10(b)). The
magenta curve is the HRR from Cone Calorimeter experiments, taken
as reference for determining the RMSE.

In comparison to what is observed for the RMSE, a different scenario
of sensitivities is identified for the ROS, as depicted in Fig. 9(b). The ST
and S1 indices show that PMMA emissivity and specific heat at 480 ◦C
are, in order, the two most important parameters to affect the ROS
12
amongst the ones investigated here, and no meaningful interaction
effects are observed. The higher importance of PMMA emissivity to
the ROS is reasonable, given that in the model, the flame is considered
optically thick, and as such, radiation is assumed to control the steady-
state propagation process by preheating the unburnt sample ahead of
the flame. The optically thick assumption for horizontally spreading
flames over PMMA samples of this size is supported by the heat flux
measurements reported by Jiang et al. [14]. In their work, for a PMMA
sample of the same thickness and similar width (10 cm), radiation was
the dominant mode of heat transfer from the flame to the solid. It
should be noted however, that the lower part of a real flame, where
the leading edge is located, the flame is usually weakly radiative and
dominated by convection, therefore being considered optically thin. For
PMMA flames, this characteristic is perceived by a transparent faint
blue colour at the flame base, see e.g. Morrisset et al. [32]. Since
this effect is not accounted for in the model, dependence on radiation
might be overpredicted, which would be reflected in an increased
sensitivity of the ROS to changes in the material emissivity. Moreover,
uncertainties related to the specified radiative fraction, which controls
the amount of radiated heat from the flame, might contribute as well
to an artificially enlarged sensitivity to emissivity. Amongst the input
parameters with lower importance, the specific heat of the insulation
material and the specific heat of PMMA at 150 ◦C are the two most
important ones.
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Fig. 11. Sobol sensitivity indices indicating the effect of input parameters on the RMSE calculated over different stages of the Cone Calorimeter simulation.
At this point, it is important to emphasise what is the main impli-
cation to the IMP revealed by the sensitivity indices shown in Fig. 9.
The RMSE is a common approach to measure deviations between two
sets of data, and therefore it is commonly used as cost function during
the inverse modelling [31]. This means that whatever influence an
input parameter has on the model output (in this case, the HRR of the
Cone Calorimeter), it should be reflected in the RMSE for an effective
estimation. However, comparison of Figs. 7(a) and 9(a) suggests that
the initial importance of PMMA emissivity and specific heat at 150 ◦C
to the HRR (Fig. 7(a)) is not manifested to the same level in the
RMSE. This implies that not only is it necessary that the direct model
output is sufficiently sensitive to the inputs that are important to the
flame spread, but also that the cost function is. In this regard, neither
of these two requirements were met, since there are several other
input parameters affecting the flame spread (reflected both in the HRR
and ROS) that have little or no importance to the HRR in the Cone
Calorimeter and/ or to the RMSE.

Motivated by the results shown in Fig. 7(a), where differences exist
between the initial 20 seconds and the rest of the simulation, additional
SAs were conducted taking two different extracts of the RMSE as output
of interest. In the first extract, the RMSE is calculated up to 20 seconds
of simulation time (RMSE-0-20) and deviations to the experimental
data are calculated accordingly up to the 20th second. Similarly, in the
second extract, the RMSE is calculated from 21 to 300 seconds (RMSE-
20-300). Sensitivity indices are presented for these two approaches
in Figs. 11(a) and 11(b), respectively. As expected, the results for
each extract present a clear correspondence to the different sensitivity
profiles shown in Fig. 7(a). The rank of parameter importance up to
20 seconds to the HRR is equivalent to the rank shown in Fig. 11(a) to
the RMSE-0-20. The same is true for the second extract. The dominance
of the specific heat values after the 20th second is reflected in the
RMSE-20-300. This analysis helps to understand why the default RMSE
seems not to be significantly influenced by any other parameter than
the specific heat at 150 ◦C and at 480 ◦C. Since the importance of
these two values is higher for the most part of the simulation, the brief
importance of the other parameters (emissivity, conductivity at 150 ◦C)
gets diluted when the whole HRR time-series is condensed in a single
RMSE value.

These observations highlight the importance of making use of cost
functions that are as sensitive as the model outputs that they intend
to represent. This way, a new design of cost functions can be defined.
Instead of optimising for the global RMSE, which may be dominated
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by only a subset of sensitive parameters, a combination of RMSE at
different phases of the experiment may cover the full set of sensitive
parameters. In the case of the Cone Calorimeter investigated here, this
would involve considering partial RMSEs calculated up to the initial
20 s and another one calculated from 21 to 300 s of the experiment,
such that the estimations of emissivity and conductivity at 150 ◦C are
improved. Still, this strategy would not be sufficient to estimate well
all parameters that are important to the spread, such as the specific
heat of the insulation material, as the Cone Calorimeter is insensitive to
it. Alternatively, optimisation targets measured from bench-scale flame
spread experiments could be employed rather than those from the Cone
Calorimeter. Specifically, the ROS could be measured and incorporated
as target in the IMP, enabling a comparison with the simulated ROS
calculated for example as introduced in Section 2.2. Yet, this strategy
may be computationally expensive and further research on this idea is
needed, particularly because it does not exist to date a typical bench-
scale flame spread experiment as the Cone Calorimeter that provides
standardised guidelines for measuring the HRR and the MLR along
with the ROS. A good starting point towards such an experiment could
be the standard reaction-to-fire test methods described in ISO 5658-2,
ISO 9239-1, and ISO 12468-1, which could be adapted to allow for the
measurement of such quantities as well as analysis of samples at the
Cone Calorimeter scale.

All in all, in addition to revealing differences between the Cone
Calorimeter and the horizontal flame spread setups, the SA on the Cone
Calorimeter disclosed that only 4 out of 15 input parameters have non-
negligible influences. In terms of thermophysical properties, these four
parameters are in fact three: emissivity, conductivity, and specific heat
of the PMMA sample. This observation is similar to the results found
in the work of Fleurotte et al. [16], who conducted a SA based on the
Morris method to determine which parameters are more important to
the HRR of a Cone Calorimeter model. In their work, PMMA emissivity
and specific heat capacity are among the most influential parameters,
along with activation energy and density. Yet, it is important to bare
in mind that other parameters which were not included in the SAs
can play a significant role in the model, and their effects on the
output must be assessed in case they are included in the optimisation
strategy. Thus, ranking the parameters according to their importance
allows for model simplification, by excluding the non-influential inputs
and/ or fixing them in the optimisation. This approach can potentially
reduce the computing time by orders of magnitude, depending on the
characteristic of the optimisation method used [2].
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Fig. 12. Values of RMSE plotted against its two most influential parameters.
3.3. Scatterplots

The calculated values of RMSE in the Cone Calorimeter setup are
plotted against the sampled values of the two most influential parame-
ters: the specific heat at 150 ◦C and at 480 ◦C. The result is a 3-D plot,
where a well-defined surface allows the graphical interpretation of the
interaction effects between the two inputs on the RMSE, see Fig. 12(a).
The 3-D surface reveals a dark-blue valley for which the RMSE values
are minimised when certain combinations of the two parameters are
taken. A 2-D projection over the axes of input parameters shown in
Fig. 12(b) clarifies that such combinations belong to a linear shaped
subset of samples in their parameter space. Another interesting region
in the 3-D surface is the plateau formed by nearly constant values of
RMSE. The existence of a plateau reveals a significant portion of the
input space that leads to no meaningful change in the RMSE. This is
particularly important for the optimisation, because it can decrease its
efficiency and lead to convergence to local minima.

A very similar relation to the one shown in Fig. 12, is presented
in the work of Batiot et al. [17], where the effects of two interacting
parameters on the quadratic error is discussed also in the context of
their consequences to the IMP and the optimisation. In their work,
the two interacting parameters are the pre-exponential factor 𝐴 and
the activation energy 𝐸 of the Arrhenius equation, and the quadratic
error is calculated over the material MLR. Batiot et al. [17] used the
Sobol indices to discuss the well-known compensation effect between
𝐴 and 𝐸 in terms of the interaction effects captured by the second-order
index. Given the similarity between the applied methodologies and the
produced outcomes, it could be said also here that the linear relation
between values of specific heat at 150 ◦C and at 480 ◦C translate into
compensation effects and trade-offs during the IMP.

The 2-D scatterplots of the ROS versus emissivity and specific heat at
480 ◦C are shown respectively in Figs. 13(a) and 13(b). The parameters
are the two most influential ones to impact the ROS, according to what
is shown in Fig. 9(b). It can be seen that the relationship between
the ROS and each individual parameter can be approximated by a
linear function. However, whereas increasing values of emissivity act
to increase the ROS, an opposite effect on the ROS is observed when
the specific heat at 480 ◦C is increased, similarly to what was previously
discussed in Section 3.2. This behaviour is coherent to the modelling
of heat transfer mechanisms. The higher the value of emissivity is, the
more heat by radiation is absorbed by the material. More absorbed
heat causes local temperatures in the material to rise faster, enhancing
the pyrolysis rates. Increased pyrolysis rates accelerates the production
of fuel gases which subsequently burn, releasing more heat which
then feeds the positive feedback loop that sustains the spread. On the
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other hand, higher specific heats make it more difficult to heat up the
material and thus they lower the pyrolysis rate, thereby reducing the
ROS, as can be seen in Fig. 13(b).

4. Conclusions

The SAs conducted in this study provided meaningful information
on the differences in parameter importance to a Cone Calorimeter and
a flame spread simulation conducted with FDS. Sobol indices of the
input parameters suggested that the Cone Calorimeter simulation is
not sufficiently sensitive to all of the parameters that are important
to the flame spread. This is an issue because unimportant parameters
to the Cone Calorimeter simulation will be estimated with higher
degree of uncertainty during the IMP, which is then carried over to
the flame spread simulation. In addition, it was revealed that the brief
importance of some parameters in the Cone Calorimeter is diminished
when the temporal development of the HRR is summarised in a single-
value output, as the global RMSE value. Only the values of specific
heat at 150 ◦C and at 480 ◦C seemed to influence the RMSE through
strong interaction effects, whereas the importance of the remaining
parameters is negligible. Moreover, the relation between the RMSE and
its two most important parameters presented by scatterplots helped to
visually identify subsets of the input space that could lead to minimised
values of RMSE or convergence to local minima during an IMP. A
possible solution for a more effective parameter estimation seems to
rely on a combination of RMSE calculated at different phases of the
experiment, such that the full set of sensitive parameters is covered.
Still, many of the important parameters to the flame spread are prac-
tically unimportant throughout the Cone Calorimeter simulation. This
limitation could possibly be overcome by IMPs based on bench-scale
flame spread experiments, in which the ROS is taken as target in the
optimisation, ensuring that the parameters relevant to the spread are
more accurately estimated.
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